Skip to main content

Advertisement

Log in

The intrinsic value of visual information affects saccade velocities

  • Research article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Let us assume that the purpose of any movement is to position our body in a more advantageous or rewarding state. For example, we might make a saccade to foveate an image because our brain assigns an intrinsic value to the information that it expects to acquire at the endpoint of that saccade. Different images might have different intrinsic values. Optimal control theory predicts that the intrinsic value that the brain assigns to targets of saccades should be reflected in the trajectory of the saccade. That is, in anticipation of foveating a highly valued image, our brain should produce a saccade with a higher velocity and shorter duration. Here, we considered four types of images: faces, objects, inverted faces, and meaningless visual noise. Indeed, we found that reflexive saccades that were made to a laser light in anticipation of viewing an image of a face had the highest velocities and shortest durations. The intrinsic value of visual information appears to have a small but significant influence on the motor commands that guide saccades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahill AT, Clark MR, Stark L (1975) The main sequence: a tool for studying human eye movements. Math Biosci 24(3/4):191–204

    Google Scholar 

  • Belova MA, Paton JJ, Salzman CD (2008) Moment-to-moment tracking of state value in the amygdala. J Neurosci 28:10023–10030

    Article  PubMed  CAS  Google Scholar 

  • Bindemann M, Burton AM, Langton SR, Schweinberger SR, Doherty MJ (2007) The control of attention to faces. J Vis 7:15–18

    Article  PubMed  Google Scholar 

  • Blatter K, Schultz W (2006) Rewarding properties of visual stimuli. Exp Brain Res 168:541–546

    Article  PubMed  Google Scholar 

  • Bray S, O’Doherty J (2007) Neural coding of reward-prediction error signals during classical conditioning with attractive faces. J Neurophysiol 97:3036–3045

    Article  PubMed  Google Scholar 

  • Bronstein AM, Kennard C (1987) Predictive eye saccades are different from visually triggered saccades. Vis Res 27:517–520

    Article  PubMed  CAS  Google Scholar 

  • Cerf M, Harel J, Einhäuser W, Koch C (2008) Predicting human gaze using low-level saliency combined with face detection. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press, Cambridge

  • Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R (2008) Adaptive control of saccades via internal feedback. J Neurosci 28:2804–2813

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, Erkelens CJ, Steinman RM (1988) Binocular co-ordination of human horizontal saccadic eye movements. J Physiol 404:157–182

    PubMed  CAS  Google Scholar 

  • Deaner RO, Khera AV, Platt ML (2005) Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Curr Biol 29:543–548

    Article  CAS  Google Scholar 

  • Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, Mayhew JEW, Overton PG, Redgrave P (2005) How visual stimuli activate dopaminergic neurons at short latency. Science 307:1476–1479

    Article  PubMed  CAS  Google Scholar 

  • Ebisawa Y, Suzu K (1995) Focal attentional level while tracking a smoothly moving target influences saccadic dynamics. In: Proceedings of the 17th annual international conference of IEEE engineering medicine and biology society, vol 2, pp 1449–1450

  • Edelman JA, Valenzuela N, Barton JJ (2006) Antisaccade velocity, but not latency, results from a lack of saccade visual guidance. Vis Res 46:1411–1421

    Article  PubMed  Google Scholar 

  • Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10:382–390

    Article  PubMed  Google Scholar 

  • Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P (2008) Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci 27:132–144

    Article  PubMed  Google Scholar 

  • Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hayden BY, Parikh PC, Deaner RO, Platt ML (2007) Economic principles motivating social attention in humans. Proc Biol Sci 274:1751–1756

    Article  PubMed  Google Scholar 

  • Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9:188–194

    Article  PubMed  Google Scholar 

  • Hikosaka O (2007) Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci 1104:229–249

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Nakamura K, Nakahara H (2006) Basal ganglia orient eyes to reward. J Neurophysiol 95:567–584

    Article  PubMed  Google Scholar 

  • Johnston K, Everling S (2008) Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn 68:271–283

    Article  PubMed  Google Scholar 

  • Kampe KKW, Frith CD, Dolan RJ, Frith U (2001) Psychology: reward value of attractiveness and gaze. Nature 413:589

    Article  PubMed  CAS  Google Scholar 

  • Madelain L, Champrenaut L, Chauvin A (2007) Control of sensorimotor variability by consequences. J Neurophysiol 98:2255–2265

    Article  PubMed  Google Scholar 

  • Maunsell JHR (2004) Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci 8:261–265

    Article  Google Scholar 

  • McCoy AN, Crowley JC, Haghighian G, Dean HL, Platt ML (2003) Saccade reward signals in posterior cingulate cortex. Neuron 40:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Milstein DM, Dorris MC (2007) The influence of expected value on saccadic preparation. J Neurosci 27:4810–4818

    Article  PubMed  CAS  Google Scholar 

  • Montagnini A, Chelazzi L (2005) The urgency to look: prompt saccades to the benefit of perception. Vis Res 45:3391–3401

    Article  PubMed  Google Scholar 

  • Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl) 191:507–520

    Article  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  Google Scholar 

  • Shepherd SV, Deaner RO, Platt ML (2006) Social status gates social attention in monkeys. Curr Biol 16:R119–R120

    Article  PubMed  CAS  Google Scholar 

  • Snyder LH, Calton JL, Dickinson AR, Lawrence BM (2002) Eye–hand coordination: saccades are faster when accompanied by a coordinated arm movement. J Neurophysiol 87:2279–2286

    PubMed  Google Scholar 

  • Straube A, Fuchs AF, Usher S, Robinson FR (1997) Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol 77:874–895

    PubMed  CAS  Google Scholar 

  • Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp Brain Res 142:284–291

    Article  PubMed  Google Scholar 

  • van Donkelaar P, Siu KC, Walterschied J (2004) Saccadic output is influenced by limb kinetics during eye–hand coordination. J Mot Behav 36:245–252

    Article  PubMed  Google Scholar 

  • Watanabe K, Lauwereyns J, Hikosaka O (2003) Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. J Neurosci 23:10052–10057

    PubMed  CAS  Google Scholar 

  • Yarbus AL (1961) Eye movements during the examination of complicated objects. Biofizika 6:52–56

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minnan Xu-Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu-Wilson, M., Zee, D.S. & Shadmehr, R. The intrinsic value of visual information affects saccade velocities. Exp Brain Res 196, 475–481 (2009). https://doi.org/10.1007/s00221-009-1879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1879-1

Keywords

Navigation