Experimental Brain Research

, Volume 198, Issue 2–3, pp 221–231 | Cite as

Perceived timing of vestibular stimulation relative to touch, light and sound

  • Michael Barnett-CowanEmail author
  • Laurence R. Harris
Research Article


Different senses have different processing times. Here we measured the perceived timing of galvanic vestibular stimulation (GVS) relative to tactile, visual and auditory stimuli. Simple reaction times for perceived head movement (438 ± 49 ms) were significantly longer than to touches (245 ± 14 ms), lights (220 ± 13 ms), or sounds (197 ± 13 ms). Temporal order and simultaneity judgments both indicated that GVS had to occur about 160 ms before other stimuli to be perceived as simultaneous with them. This lead was significantly less than the relative timing predicted by reaction time differences compatible with an incomplete tendency to compensate for differences in processing times.


Audition Galvanic vestibular stimulation Multisensory Simultaneity judgments Temporal order judgments Touch Vestibular Vision 



This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). M. Barnett-Cowan was supported by a PGS-D3 NSERC Scholarship and a Canadian Institutes of Health Research Vision Health Science Training Grant. Our thanks go to Michael Jenkin for technical assistance, to Jeff Sanderson who helped conduct experiments and to David Shore for comments on this project.


  1. Allan LG (1975) The relationship between judgments of successiveness and judgments of order. Percept Psychophys 18:29–36Google Scholar
  2. Alvarez-Buylla R, de Arellano JR (1952) Local responses in Pacinian corpuscles. Am J Physiol 172:237–244Google Scholar
  3. Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150PubMedCrossRefGoogle Scholar
  4. Aw ST, Todd MJ, Halmagyi GM (2006) Latency and initiation of the human vestibuloocular reflex to pulsed galvanic stimulation. J Neurophysiol 96:925–930PubMedCrossRefGoogle Scholar
  5. Bekesy GV (1963) Interaction of paired sensory stimuli and conduction in peripheral nerves. J Appl Physiol 18:1276–1284Google Scholar
  6. Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899PubMedGoogle Scholar
  7. Bergenheim M, Johansson H, Granlund B, Pederson J (1996) Experimental evidence for a synchronization of sensory information to conscious experience. In: Hameroff SR, Kaszniak AW, Scott AC (eds) Toward a science of consciousness: the first Tucson discussions and debates. MIT Press, Cambridge, pp 303–310Google Scholar
  8. Biguer B, Donaldson IML, Hein A, Jeannerod M (1988) Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111:1405–1424PubMedCrossRefGoogle Scholar
  9. Brandt T, Dieterich M (1999) The vestibular cortex: its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312PubMedCrossRefGoogle Scholar
  10. Brantberg K, Magnusson M (1990) Galvanically induced asymmetric optokinetic after-nystagmus. Acta Otolaryngol 110:189–195PubMedCrossRefGoogle Scholar
  11. Bucher SF, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry TA, Brandt T (1998) Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44:120–125PubMedCrossRefGoogle Scholar
  12. Buys E (1909) Beitrag zum Studium des galvanischen Nystagmus mit hilfe der Nystagmographie. Mschr Ohrenheilk 43:801–803Google Scholar
  13. Capelli A, Israel I (2007) One-second interval production task during postrotatory sensation. J Vestib Res 17:239–249PubMedGoogle Scholar
  14. Capelli A, Deborne R, Israël I (2007) Temporal intervals production during passive self-motion in darkness. Curr Psychol Lett 22Google Scholar
  15. Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677PubMedCrossRefGoogle Scholar
  16. Craig JC, Baihua XU (1990) Temporal order and tactile patterns. Percept Psychophys 47:22–34PubMedGoogle Scholar
  17. Day BL, Severac Cauquil A, Bartolomei L, Pastor MA, Lyon IN (1997) Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. J Physiol 500:661–672PubMedGoogle Scholar
  18. de Waele C, Baudonniere PM, Lepecq JC, Tran Ba Huy P, Vidal PP (2001) Vestibular projections in the human cortex. Exp Brain Res 141:541–551PubMedCrossRefGoogle Scholar
  19. Diederich A (1995) Intersensory facilitation of reaction time: evaluation of counter and diffusion coactivation models. J Math Psychol 39:197–215CrossRefGoogle Scholar
  20. Engel GR, Dougherty WG (1971) Visual–auditory distance constancy. Nature 234:308PubMedCrossRefGoogle Scholar
  21. Exner S (1868) Über die zu einer Gesichtswahrnehmung nöthige Zeit. Wiener Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 58:601–632Google Scholar
  22. Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675PubMedGoogle Scholar
  23. Figliozzi F, Guariglia P, Silvetti M, Siegler I, Doricchi F (2005) Effects of vestibular rotatory accelerations on covert attentional orienting in vision and touch. J Cogn Neurosci 17:1638–1651PubMedCrossRefGoogle Scholar
  24. Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J App Physiol 96:2301–2316CrossRefGoogle Scholar
  25. Gibbon J, Rutschmann R (1969) Temporal order judgment and reaction time. Science 165:413–415PubMedCrossRefGoogle Scholar
  26. Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256PubMedGoogle Scholar
  27. Grant P, Lee PTS (2007) Motion–visual phase-error detection in a flight simulator. J Aircr 44:927–935CrossRefGoogle Scholar
  28. Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259PubMedCrossRefGoogle Scholar
  29. Harrar V, Harris LR (2005) Simultaneity constancy: detecting events with touch and vision. Exp Brain Res 166:465–473PubMedCrossRefGoogle Scholar
  30. Harrar V, Harris LR (2008) The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp Brain Res 186:517–524PubMedCrossRefGoogle Scholar
  31. Hirsh IJ, Sherrick CE Jr (1961) Perceived order in different sense modalities. J Exp Psychol 62:423–432PubMedCrossRefGoogle Scholar
  32. Israël I, Capelli A, Sablé D, Laurent C, Lecoq C, Bredin J (2004) Multifactorial interactions involved in linear self-transport distance estimate: a place for time. Int J Psychophysiol 53:21–28PubMedCrossRefGoogle Scholar
  33. Jaekl PM, Harris LR (2007) Auditory–visual temporal integration measured by shifts in perceived temporal location. Neurosci Lett 417:219–224PubMedCrossRefGoogle Scholar
  34. Jaskowski P, Jaroszyk F, Hojan-Jezierska D (1990) Temporal-order judgments and reaction time for stimuli of different modalities. Psychol Res 52:35–38PubMedCrossRefGoogle Scholar
  35. Keetels M, Stekelenburg J, Vroomen J (2007) Auditory grouping occurs prior to intersensory pairing: evidence from temporal ventriloquism. Exp Brain Res 180:449–456PubMedCrossRefGoogle Scholar
  36. King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60:492–500PubMedCrossRefGoogle Scholar
  37. Kopinska A, Harris LR (2004) Simultaneity constancy. Perception 33:1049–1060PubMedCrossRefGoogle Scholar
  38. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68PubMedGoogle Scholar
  39. Lewald J, Karnath HO (2000) Vestibular influence on human auditory space perception. J Neurophysiol 84:1107–1111PubMedGoogle Scholar
  40. Lewald J, Karnath HO (2001) Sound lateralization during passive whole-body rotation. Eur J NeuroSci 13:2268–2272PubMedCrossRefGoogle Scholar
  41. Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709PubMedGoogle Scholar
  42. Lorente de No R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30:245–291Google Scholar
  43. Lund S, Broberg C (1983) Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. Acta Physiol Scand 117:307–309PubMedCrossRefGoogle Scholar
  44. Mitrani L, Shekerdjiiski S, Yakimoff N (1986) Mechanisms and asymmetries in visual perception of simultaneity and temporal order. Biol Cybern 54:159–165PubMedCrossRefGoogle Scholar
  45. Navarra J, Soto-Faraco S, Spence C (2007) Adaptation to audiotactile asynchrony. Neurosci Lett 413:72–76PubMedCrossRefGoogle Scholar
  46. Pfaltz CR (1967) Recherches nystagmographiques sur la réaction galvanique vestibulaire. Rev Neurol 117:309–315PubMedGoogle Scholar
  47. Phillips-Silver J, Trainor LJ (2005) Feeling the beat: movement influences infant rhythm perception. Science 308:1430PubMedCrossRefGoogle Scholar
  48. Phillips-Silver J, Trainor LJ (2007) Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105:533–546PubMedCrossRefGoogle Scholar
  49. Pöppel E, Schill K, von Steinbüchel N (1990) Sensory integration within temporally neutral systems states: a hypothesis. Naturwissenschaften 77:89–91PubMedCrossRefGoogle Scholar
  50. Rains JD (1963) Signal luminance and position effects in human reaction time. Vis Res 61:239–251PubMedCrossRefGoogle Scholar
  51. Roll R, Velay JL, Roll JP (1991) Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp Brain Res 85:423–431PubMedCrossRefGoogle Scholar
  52. Roufs JAJ (1963) Perception lag as a function of stimulus luminance. Vis Res 3:81–91CrossRefGoogle Scholar
  53. Rutschmann J, Link R (1964) Perception of temporal order of stimuli differing in sense mode and simple reaction time. Percept Mot Skills 18:345–352PubMedGoogle Scholar
  54. Schiefer U, Strasburger H, Becker ST, Vonthein R, Schiller J, Dietrich TJ, Hart W (2001) Reaction time in automated kinetic perimetry: effects of stimulus luminance, eccentricity, and movement direction. Vis Res 41:2157–2164PubMedCrossRefGoogle Scholar
  55. Schneider KA, Bavelier D (2003) Components of visual prior entry. Cogn Psychol 47:333–366PubMedCrossRefGoogle Scholar
  56. Shore DI, Barnes ME, Spence C (2006) Temporal aspects of the visuotactile congruency effect. Neurosci Lett 392:96–100PubMedCrossRefGoogle Scholar
  57. Snyder LH, Grieve KL, Brotchie P, Andersen RA (1998) Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394:887–891PubMedCrossRefGoogle Scholar
  58. Spence C, Shore DI, Klein RM (2001) Multisensory prior entry. J Exp Psychol Gen 130:799–832PubMedCrossRefGoogle Scholar
  59. Spence C, Baddeley R, Zampini M, James R, Shore DI (2003) Multisensory temporal order judgments: when two locations are better than one. Percept Psychophys 65:318–328PubMedGoogle Scholar
  60. Sugita Y, Suzuki Y (2003) Implicit estimation of sound-arrival time. Nature 421:911PubMedCrossRefGoogle Scholar
  61. Taylor JL, McCloskey DI (1991) Illusions of head and visual target displacement induced by vibration of neck muscles. Brain 114:755–759PubMedCrossRefGoogle Scholar
  62. Titchener EB (1908) Lectures on the elementary psychology of feeling and attention. Macmillan, New YorkCrossRefGoogle Scholar
  63. Trainor LJ, Gao X, Lei JJ, Lehtovaara K, Harris LR (2009) The primal role of the vestibular system in determining musical rhythm. Cortex 45:35–43PubMedCrossRefGoogle Scholar
  64. van Eijk RLJ, Kohlrausch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968PubMedCrossRefGoogle Scholar
  65. Vatakis A, Navarra J, Soto-Faraco S, Spence C (2008) Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. Exp Brain Res 185:521–529PubMedCrossRefGoogle Scholar
  66. Watson SRD, Colebatch JG (1998) Vestibulocollic reflexes evoked by short-duration galvanic stimulation in man. J Physiol 513:587–597PubMedCrossRefGoogle Scholar
  67. Wilson JA, Anstis SM (1969) Visual delay as a function of luminance. Am J Psychol 82:350–358PubMedCrossRefGoogle Scholar
  68. Zampini M, Brown T, Shore DI, Maravita A, Röder B, Spence C (2005) Audiotactile temporal order judgments. Acta Psychol 118:277–291CrossRefGoogle Scholar
  69. Zeki S (1998) The asynchrony of consciousness. Proc R Soc B Biol Sci 265:1583–1585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Multisensory Integration Laboratory, Department of Psychology, Centre for Vision ResearchYork UniversityTorontoCanada

Personalised recommendations