Skip to main content

Visuo-motor coordination and internal models for object interception

Abstract

Intercepting and avoiding collisions with moving objects are fundamental skills in daily life. Anticipatory behavior is required because of significant delays in transforming sensory information about target and body motion into a timed motor response. The ability to predict the kinematics and kinetics of interception or avoidance hundreds of milliseconds before the event may depend on several different sources of information and on different strategies of sensory-motor coordination. What are exactly the sources of spatio-temporal information and what are the control strategies remain controversial issues. Indeed, these topics have been the battlefield of contrasting views on how the brain interprets visual information to guide movement. Here we attempt a synthetic overview of the vast literature on interception. We discuss in detail the behavioral and neurophysiological aspects of interception of targets falling under gravity, as this topic has received special attention in recent years. We show that visual cues alone are insufficient to predict the time and place of interception or avoidance, and they need to be supplemented by prior knowledge (or internal models) about several features of the dynamic interaction with the moving object.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. When the hand is not stationary but moves to intersect target trajectory, hand and target motion may be appropriately described using the polar coordinates of direction and distance, and their time derivatives.

  2. Variables are implicitly considered function of time unless stated otherwise. Thus, θ stays for θ(t), \( \dot{\theta}\) stays for dθ(t)/dt. Initial values are denoted by the lowered 0: \( \dot{\theta }_{0} \) stays for [dθ(t)/dt] t=0. In the following, for simplicity we assume that a given variable represents the neural estimate at that instant of time. In fact, estimates within the CNS are generally affected by significant transmission delays (see “Neural and mechanical delays”). Moreover, neural estimates likely reflect the average of several values sampled over an interval of time, rather than instantaneous values.

References

  • Abernethy B (1990) Expertise, visual search, and information pick-up in squash. Perception 19:63–77

    PubMed  CAS  Article  Google Scholar 

  • Alderson GJK, Sully DJ, Sully HG (1974) An operational analysis of a one-handed catching task using high-speed photography. J Mot Behav 6:217–226

    Google Scholar 

  • Babler TG, Dannemiller JL (1993) Role of image acceleration in judging landing of free falling projectiles. J Exp Psychol Hum Percept Perform 19:15–31

    PubMed  CAS  Article  Google Scholar 

  • Bahill AT, Karnavas WJ (1993) The perceptual illusion of baseball’s rising fastball and breaking curve ball. J Exp Psychol Hum Percept Perform 19:3–14

    Article  Google Scholar 

  • Bahill AT, McDonald JD (1983) Smooth pursuit eye movements in response to predictable target motions. Vision Res 23:1573–1583

    PubMed  CAS  Article  Google Scholar 

  • Bahill AT, Baldwin DG, Venkateswaran J (2005) Predicting a baseball’s path. Am Sci 93:218–225

    Google Scholar 

  • Beek PJ, Dessing JC, Peper CE, Bullock D (2003) Modelling the control of interceptive actions. Philos Trans R Soc Lond B Biol Sci 358:1511–1523

    PubMed  CAS  Article  Google Scholar 

  • Benguigui N, Ripoll H, Broderick MP (2003) Time-to-Contact estimation of accelerated stimuli is based on first-order information. J Exp Psychol Hum Percept Perform 29:1083–1101

    PubMed  Article  Google Scholar 

  • Bennett DJ, Gorassini M, Prochazka A (1994) Catching a ball: contributions of intrinsic muscle stiffness, reflexes, and higher order responses. Can J Physiol Pharmacol 72:525–534

    PubMed  CAS  Google Scholar 

  • Bennett SJ, Orban de Xivry JJ, Barnes GR, Lefèvre P (2007) Target acceleration can be extracted and represented within the predictive drive to ocular pursuit. J Neurophysiol 98:1405–1414

    PubMed  Article  Google Scholar 

  • Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398:334–338

    PubMed  CAS  Article  Google Scholar 

  • Beverley KI, Regan D (1979) Separable after effects of changing-size and motion-in-depth: different neural mechanisms? Vision Res 19:727–732

    PubMed  CAS  Article  Google Scholar 

  • Bootsma RJ, Oudejans RR (1993) Visual information about time-to-collision between two objects. J Exp Psychol Hum Percept Perform 19:1041–1052

    PubMed  CAS  Article  Google Scholar 

  • Bootsma RJ, Peper CE (1992) Predictive visual information sources for the regulation of action with special emphasis on catching and hitting. In: Proteau L, Elliott D (eds) Vision and motor control. Elsevier Science, Amsterdam, pp 285–314

    Chapter  Google Scholar 

  • Bootsma RJ, van Wieringen PCW (1990) Timing an attacking forehand drive in table tennis. J Exp Psychol Hum Percept Perform 16:21–29

    Article  Google Scholar 

  • Bosco G, Carrozzo M, Lacquaniti F (2008) Contributions of the human temporo-parietal junction and MT/V5+ to the timing of interception revealed by TMS. J Neurosci 28:12071–12084

    PubMed  CAS  Article  Google Scholar 

  • Boynton RM (1974) In: Cartarette EC, Friedman MP (eds) Handbook of perception, vol 1. Academic Press, New York, pp 285–307

  • Brancazio P (1985) Looking into Chapman’s homer: the physics of judging a fly ball. Am J Phys 53:849–855

    Article  Google Scholar 

  • Brenner E, Smeets JB (2007) Flexibility in intercepting moving objects. J Vis 7:1–17

    Google Scholar 

  • Brenner E, Smeets JB, de Lussanet MH (1998) Hitting moving targets. Continuous control of the acceleration of the hand on the basis of the target’s velocity. Exp Brain Res 122:467–474

    PubMed  CAS  Article  Google Scholar 

  • Brouwer AM, Brenner E, Smeets JB (2000) Hitting moving objects: the dependency of hand velocity on the speed of the target. Exp Brain Res 133:242–248

    PubMed  CAS  Article  Google Scholar 

  • Brouwer AM, Brenner E, Smeets JB (2002) Perception of acceleration with short presentation times: can acceleration be used in interception? Percept Psychophys 64:1160–1168

    PubMed  Google Scholar 

  • Brouwer AM, Brenner E, Smeets JB (2003a) When is behavioural data evidence for a control theory? Tau-coupling revisited. Motor Control 7:103–110

    PubMed  Google Scholar 

  • Brouwer AM, Middleburg T, Smeets JB, Brenner E (2003b) Hitting moving objects. A dissociation between the use of the target’s speed and direction of motion. Exp Brain Res 152:368–375

    PubMed  Article  Google Scholar 

  • Brouwer AM, López-Moliner J, Brenner E, Smeets JB (2006) Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity. Vision Res 46:382–391

    PubMed  Article  Google Scholar 

  • Brown LE, Wilson ET, Goodale MA, Gribble PL (2007) Motor force field learning influences visual processing of target motion. J Neurosci 27:9975–9983

    PubMed  CAS  Article  Google Scholar 

  • Calderone JB, Kaiser MK (1989) Visual acceleration detection: effect of sign and motion orientation. Percept Psychophys 45:391–394

    PubMed  CAS  Google Scholar 

  • Caljouw SR, van der Kamp J, Savelsberg GJP (2004) Catching optical information for the regulation of timing. Exp Brain Res 155:427–438

    PubMed  CAS  Article  Google Scholar 

  • Carnahan H, McFadyen BJ (1996) Visuomotor control when reaching toward and grasping moving targets. Acta Psychol 92:17–32

    CAS  Article  Google Scholar 

  • Cavallo V, Laurent M (1988) Visual information and skill level in time-to-collision estimation. Perception 17:623–632

    PubMed  CAS  Article  Google Scholar 

  • Chapman S (1968) Catching a baseball. Am J Phys 36:868–870

    Article  Google Scholar 

  • Churchland MM, Lisberger SG (2001a) Experimental and computational analysis of monkey smooth pursuit eye movements. J Neurophysiol 86:741–759

    PubMed  CAS  Google Scholar 

  • Churchland MM, Lisberger SG (2001b) Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J Neurosci 21:9387–9402

    PubMed  CAS  Google Scholar 

  • Collewijn H, Erkelens CJ (1990) Binocular eye movements and the perception of depth. In: Kowler E (ed) Eye movements and their role in visual and cognitive processes. Elsevier, Amsterdam, pp 213–261

    Google Scholar 

  • Craig CM, Lee DN (1999) Neonatal control of nutritive sucking pressure: evidence for an intrinsic tau-guide. Exp Brain Res 124:371–382

    PubMed  CAS  Article  Google Scholar 

  • Craig CM, Delay D, Grealy MA, Lee DN (2000) Guiding the swing in golf putting. Nature 405:295–296

    PubMed  CAS  Article  Google Scholar 

  • Craig CM, Berton E, Rao G, Fernandez L, Bootsma RJ (2006) Judging where a ball will go: the case of curved free kicks in football. Naturwissenschaften 93:97–101

    PubMed  CAS  Article  Google Scholar 

  • d’Avella A, Portone A, Fernandez L, Lacquaniti F (2008) Arm kinematics and muscle patterns for intercepting balls flying in three dimensional space. Program No. 379.15. Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC. Online

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in the motor system: a short review. J Neural Eng 2:S313–S319

    PubMed  Article  Google Scholar 

  • Davies MNO, Green PR (1990) Optic flow field variables trigger landing in hawks but not in pigeons. Naturwissenschaften 77:142–144

    PubMed  CAS  Article  Google Scholar 

  • Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130:159–168

    PubMed  CAS  Article  Google Scholar 

  • de Bruyn B, Orban GA (1988) Human velocity and direction discrimination measured with random dot patterns. Vision Res 28:1323–1335

    PubMed  Article  Google Scholar 

  • de Lussanet MHE, Smeets JBJ, Brenner E (2001) The effect of expectations on hitting moving targets: influence of the preceding target’s speed. Exp Brain Res 137:246–248

    PubMed  Article  Google Scholar 

  • De Valois RL, De Valois KK (1991) Vernier acuity with stationary moving Gabors. Vision Res 31:1619–1626

    PubMed  Article  Google Scholar 

  • DeLucia PR (1991) Pictorial and motion-based information for depth perception. J Exp Psychol Hum Percept Perform 17:738–748

    PubMed  CAS  Article  Google Scholar 

  • DeLucia PR (2004) Multiple sources of information influence time-to-contact judgements: do heuristics accommodate limits in sensory and cognitive processes? In: Hecht H, Savelsbergh G (eds) Time-to-contact. Advances in psychology series. Elsevier, Amsterdam, pp 243–285

    Chapter  Google Scholar 

  • DeLucia PR, Warren R (1994) Pictorial and motion-based depth information during active control of self-motion: size-arrival effects on collision avoidance. J Exp Psychol Hum Percept Perform 20:783–798

    PubMed  CAS  Article  Google Scholar 

  • Dessing JC, Bullock D, Peper CL, Beek PJ (2002) Prospective control of manual interceptive actions: Comparative simulations of extant and new model constructs. Neural Netw 15:163–179

    PubMed  Article  Google Scholar 

  • Dessing JC, Peper CL, Bullock D, Beek PJ (2005) How position, velocity and temporal information combine in the prospective control of catching: data and model. J Cogn Neurosci 17:668–686

    PubMed  Article  Google Scholar 

  • Distler HK, Gegenfurtner KR, van Veen HA, Hawken MJ (2000) Velocity constancy in a virtual reality environment. Perception 29:1423–1435

    PubMed  CAS  Article  Google Scholar 

  • Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345

    PubMed  CAS  Google Scholar 

  • Engel KC, Soechting JF (2000) Manual tracking in two dimensions. J Neurophysiol 83:3483–3496

    PubMed  CAS  Google Scholar 

  • Ferrera VP, Barborica A (2006) A flashing line can warp your mind. Neuron 49:327–329

    PubMed  CAS  Article  Google Scholar 

  • Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15:453–458

    PubMed  CAS  Article  Google Scholar 

  • Fisk J, Lackner JR, Dizio P (1993) Gravitational force level influences arm movement. J Neurophysiol 69:504–511

    PubMed  CAS  Google Scholar 

  • Frost BJ, Sun H (2004) The biological bases of time-to-collision computation. In: Hecht H, Savelsbergh G (eds) Time-to-contact. Advances in psychology series. Elsevier, Amsterdam, pp 13–37

    Chapter  Google Scholar 

  • Gabbiani F, Krapp HG, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 420:320–324

    PubMed  CAS  Article  Google Scholar 

  • Gellman RS, Carl JR (1991) Motion processing for saccadic eye movements in humans. Exp Brain Res 84:660–667

    PubMed  CAS  Article  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gottsdanker RM, Frick JW, Lockard RB (1961) Identifying the acceleration of visual targets. Br J Psychol 52:31–42

    PubMed  CAS  Google Scholar 

  • Grasso R, Ivanenko YP, McIntyre J, Viaud-Delmon I, Berthoz A (2000) Spatial, not temporal cues drive predictive orienting movements during navigation: a virtual reality study. Neuroreport 11:775–778

    PubMed  CAS  Article  Google Scholar 

  • Gray R, Regan D (1998) Accuracy of estimating time to collision using binocular and monocular information. Vision Res 38:499–512

    PubMed  CAS  Article  Google Scholar 

  • Gray R, Regan D (1999) Adapting to expansion increases perceived time-to-collision. Vision Res 39:3602–3607

    PubMed  CAS  Article  Google Scholar 

  • Gray R, Regan D (2000) Estimating the time to collision with a rotating nonspherical object. Vision Res 40:49–63

    PubMed  CAS  Article  Google Scholar 

  • Gray R, Regan D (2007) Glare susceptibility test results correlate with temporal safety margin when executing turns across approaching vehicles in simulated low-sun conditions. Ophthalmic Physiol Opt 27:440–450

    PubMed  Article  Google Scholar 

  • Gray R, Macuga K, Regan D (2004) Long range interactions between object-motion and self-motion in the perception of movement in depth. Vision Res 44:179–195

    PubMed  Article  Google Scholar 

  • Gray R, Regan D, Castaneda B, Sieffert R (2006) Role of feedback in the accuracy of perceived direction of motion-in-depth and control of interceptive action. Vision Res 46:1676–1694

    PubMed  Article  Google Scholar 

  • Grealy MA, Craig CM, Bourdin C, Coleman SG (2004) Judging time intervals using a model of perceptuo-motor control. J Cogn Neurosci 16:1185–1195

    PubMed  Article  Google Scholar 

  • Grosslight JH, Fletcher HJ, Masterton RB, Hagen R (1978) Monocular vision and landing performance in general aviation pilots: cyclops revisited. Hum Factors 20:127–133

    Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990) Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol 430:559–583

    PubMed  Google Scholar 

  • Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259

    PubMed  CAS  Article  Google Scholar 

  • Hayhoe M, Mennie N, Sullivan B, Gorgos K (2005) The role of internal models and prediction in catching balls. Proceedings of AAAI (American Association for Artificial Intelligence), Fall 2005

  • Hecht H, Savelsbergh G (eds) (2004) Theories of time-to-contact, advances in psychology Series. Elsevier, Amsterdam

  • Hecht H, Kaiser MK, Banks MS (1996) Gravitational acceleration as a cue for absolute size and distance? Percept Psychophys 58:1066–1075

    PubMed  CAS  Google Scholar 

  • Heuer H (1993) Estimates of time to contact based on changing size and changing target vergence. Perception 22:549–563

    PubMed  CAS  Article  Google Scholar 

  • Howard IP, Rogers BJ (2001) Seeing in Depth. Porteous Publishing, Toronto

    Google Scholar 

  • Hubbard TL (1995) Environmental invariants in the representation of motion: implied dynamics and representational momentum, gravity, friction and centripetal force. Psychon Bull Rev 2:322–338

    Google Scholar 

  • Huber S, Krist H (2004) When is the ball going to hit the ground? Duration estimates, eye movements, and mental imagery of object motion. J Exp Psychol Hum Percept Perform. 30:431–444

    PubMed  Article  Google Scholar 

  • Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F (2005) Representation of visual gravitational motion in the human vestibular cortex. Science 308:416–419

    PubMed  CAS  Article  Google Scholar 

  • Judge SJ, Bradford CM (1988) Adaptation to telestereoscopic viewing measured by one-handed ball-catching performance. Perception 17:783–802

    PubMed  CAS  Article  Google Scholar 

  • Kaiser MK, Hecht H (1995) Time-to-passage judgments in nonconstant optical flow fields. Percept Psychophys 57:817–825

    PubMed  CAS  Google Scholar 

  • Kaiser MK, Johnson WW (2004) How now, broad tau? In: Hecht H, Savelsbergh G (eds) Time-to-contact. Advances in psychology series. Elsevier, Amsterdam, pp 287–302

    Chapter  Google Scholar 

  • Kaiser MK, Mowafy L (1993) Optical specification of time to passage: observers’ sensitivity to global tau. J Exp Psychol Hum Percept Perform 19:1028–1040

    PubMed  CAS  Article  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    PubMed  CAS  Article  Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol 55:271–304

    PubMed  Article  Google Scholar 

  • Kerzel D, Hecht H, Kim NG (1999) Image velocity, not tau, explains arrival time judgments from global optic flow. J Exp Psychol Hum Percept Perform 25:1540–1555

    Article  Google Scholar 

  • Kim IK, Spelke ES (1992) Infants’ sensitivity to effects of gravity on visible object motion. J Exp Psychol Hum Percept Perform 18:385–393

    PubMed  CAS  Article  Google Scholar 

  • Koenderink JJ (1985) Space, form and optical deformations. In: Ingle D, Jeannerod M, Lee DN (eds) Brain Mechanisms and Spatial Vision. Martinus Nijhoff Publishers, Dordrecht, pp 31–59

    Google Scholar 

  • Krekelberg B (2008) Perception of direction is not compensated for neural latency. Behav Brain Sci 31:208–209

    Article  Google Scholar 

  • Kruk R, Regan D, Beverley KI, Longridge T (1983) Flying performance on the advanced simulator for pilot training and laboratory tests of vision. Hum Factors 25:457–466

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:2–26

    PubMed  CAS  Article  Google Scholar 

  • Lacquaniti F (1996) Neural control of limb mechanics for visuomanual coordination. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain: the neurophysiology and psychology of hand function. Academic Press, Orlando, pp 213–237

    Google Scholar 

  • Lacquaniti F, Maioli C (1987) Anticipatory and reflex coactivation of antagonist muscles in catching. Brain Res 406:373–378

    PubMed  CAS  Article  Google Scholar 

  • Lacquaniti F, Maioli C (1989a) Adaptation to suppression of visual information during catching. J Neurosci 9:149–159

    PubMed  CAS  Google Scholar 

  • Lacquaniti F, Maioli C (1989b) The role of preparation in tuning anticipatory and reflex responses during catching. J Neurosci 9:134–148

    PubMed  CAS  Google Scholar 

  • Lacquaniti F, Borghese NA, Carrozzo M (1991) Transient reversal of the stretch reflex in human arm muscles. J Neurophysiol 66:939–954

    PubMed  CAS  Google Scholar 

  • Lacquaniti F, Borghese NA, Carrozzo M (1992) Internal models of limb geometry in the control of hand compliance. J Neurosci 12:1750–1762

    PubMed  CAS  Google Scholar 

  • Lacquaniti F, Carrozzo M, Borghese NA (1993a) The role of vision in tuning anticipatory motor responses of the limbs. In: Berthoz A et al (eds) Multisensory control of movement. Oxford University Press, Oxford, pp 379–393

    Google Scholar 

  • Lacquaniti F, Carrozzo M, Borghese NA (1993b) Time-varying mechanical behavior of multi-jointed arm in man. J Neurophysiol 69:1443–1464

    PubMed  CAS  Google Scholar 

  • Lagae L, Raiguel S, Orban GA (1993) Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol 69:19–39

    PubMed  CAS  Google Scholar 

  • Land MF, McLeod P (2000) From eye movements to actions: how batsmen hit the ball. Nat Neurosci 3:1340–1345

    PubMed  CAS  Article  Google Scholar 

  • Lang CE, Bastian AJ (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82:2108–2119

    PubMed  CAS  Google Scholar 

  • Lappe M (2004) Building blocks for time-to-contact estimation by the brain. In: Hecht H, Savelsbergh G (eds) Time-to-contact. Advances in psychology series. Elsevier, Amsterdam, pp 39–52

    Chapter  Google Scholar 

  • Le Seac’h AB, McIntyre J (2007) Multimodal reference frame for the planning of vertical arms movements. Neurosci Lett 423:211–215

    PubMed  CAS  Article  Google Scholar 

  • Lee DN (1976) A theory of visual control of braking based on information about time-to-collision. Perception 5:437–459

    PubMed  CAS  Article  Google Scholar 

  • Lee DN (1980) Visuo-motor coordination in space-time. In: Stelmach GE, Requin J (eds) Tutorials in motor behaviour. North-Holland, Amsterdam, pp 281–295

    Chapter  Google Scholar 

  • Lee DN (1998) Guiding movement by coupling taus. Ecol Psychol 10:221–250

    Article  Google Scholar 

  • Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293:293–294

    Article  Google Scholar 

  • Lee DN, Young DS (1985) Visual timing of interceptive action. In: Ingle D, Jeannerod M, Lee DN (eds) Brain mechanisms and spatial vision. Martinus Nijhoff Publishers, Dordrecht, pp 1–30

    Google Scholar 

  • Lee DN, Young DS, Reddish PE, Lough S, Clayton TMH (1983) Visual timing in hitting an accelerating ball. Q J Exp Psychol A 35:333–346

    PubMed  CAS  Google Scholar 

  • Lee DN, Simmons JA, Saillant PA, Bouffard F (1995) Steering by echolocation: a paradigm of ecological acoustics. J Comp Physiol A 176:347–354

    PubMed  CAS  Google Scholar 

  • Lee D, Port NL, Georgopoulos AP (1997) Manual interception of moving targets. II. On-line control of overlapping submovements. Exp Brain Res 116:421–433

    PubMed  CAS  Article  Google Scholar 

  • Lee DN, Craig CM, Grealy MA (1999) Sensory and intrinsic coordination of movement. Proc Biol Sci 266:2029–2035

    PubMed  CAS  Article  Google Scholar 

  • Lee DN, Georgopoulos AP, Clark MJ, Craig CM, Port NL (2001) Guiding contact by coupling the taus of gaps. Exp Brain Res 139:151–159

    PubMed  CAS  Article  Google Scholar 

  • Lisberger SG (1998) Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys. J Neurophysiol 79:1918–1930

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246

    PubMed  CAS  Google Scholar 

  • Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27:9354–9368

    PubMed  CAS  Article  Google Scholar 

  • López-Moliner J, Brenner E, Smeets JB (2007a) Effects of texture and shape on perceived time to passage: knowing “what” influences judging “when”. Percept Psychophys 69:887–894

    PubMed  Google Scholar 

  • López-Moliner J, Field DT, Wann JP (2007b) Interceptive timing: prior knowledge matters. J Vis 7:1–8

    Google Scholar 

  • MacNeilage PR, Banks MS, Berger DR, Bulthoff HH (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp Brain Res 179:263–290

    PubMed  Article  Google Scholar 

  • Maffei V, Macaluso E, Indovina I, Orban G, Lacquaniti F (2007) Simplified representations of Newton’s laws built-in to the human brain contribute to interception of real and apparent motion. Society for Neuroscience

  • Maimon G, Assad JA (2006) A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci 9:948–955

    PubMed  CAS  Article  Google Scholar 

  • Marinovic W, Plooy A, Tresilian JR (2008) The time course of amplitude specification in brief interceptive actions. Exp Brain Res 188:275–288

    PubMed  Article  Google Scholar 

  • Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • Mazyn LI, Lenoir M, Montagne G, Savelsbergh GJ (2004) The contribution of stereo vision to one-handed catching. Exp Brain Res 157:383–390

    PubMed  Article  Google Scholar 

  • Mazyn LI, Savelsbergh GJ, Montagne G, Lenoir M (2007) Planning and on-line control of catching as a function of perceptual-motor constraints. Acta Psychol 126:59–78

    Article  Google Scholar 

  • McBeath MK, Shaffer DM, Kaiser MK (1995) How baseball fielders determine where to run to catch fly balls. Science 268:569–573

    PubMed  CAS  Article  Google Scholar 

  • McConnell DS, Muchisky MM, Bingham GP (1998) The use of time and trajectory forms as visual information about spatial scale in events. Percept Psychophys 60:1175–1187

    PubMed  CAS  Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws? Nat Neurosci 4:693–694

    PubMed  CAS  Article  Google Scholar 

  • McIntyre J, Senot P, Prévost P, Zago M, Lacquaniti F, Berthoz A (2003) The use of on-line perceptual invariants versus cognitive internal models for the predictive control of movement and action. Proceedings of the First IEEE EMBS Conference on Neural Engineering Capri, 20–22 March, pp 438–441

  • McKee SP (1981) A local mechanism for different velocity discrimination. Vision Res 21:491–500

    PubMed  CAS  Article  Google Scholar 

  • McKee SP, Welch L (1989) Is there a constancy for velocity? Vision Res 29:553–561

    PubMed  CAS  Article  Google Scholar 

  • McLeod P (1987) Visual reaction time and high-speed ball games. Perception 16:49–59

    PubMed  CAS  Article  Google Scholar 

  • McLeod P, Dienes Z (1993) Running to catch the ball. Nature 362:23

    PubMed  CAS  Article  Google Scholar 

  • McLeod P, Dienes Z (1996) Do fielders know where to go to catch the ball or only how to get there? J Exp Psychol Hum Percept Perform 22:531–543

    Article  Google Scholar 

  • McLeod P, Reed N, Dienes Z (2006) The generalized optic acceleration cancellation theory of catching. J Exp Psychol Hum Percept Perform 32:139–148

    PubMed  Article  Google Scholar 

  • Merchant H, Georgopoulos AP (2006) Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol 95:1–13

    PubMed  Article  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos AP (2003) Functional organization of parietal neuronal responses to optic flow stimuli. J Neurophysiol 90:675–682

    PubMed  Article  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos AP (2004) Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. Cereb Cortex 14:314–331

    PubMed  Article  Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618

    PubMed  CAS  Article  Google Scholar 

  • Michaels CF, Zeinstra EB, Oudejans RR (2001) Information and action in punching a falling ball. Q J Exp Psychol A 54:69–93

    PubMed  CAS  Article  Google Scholar 

  • Miller WL, Maffei V, Bosco G, Iosa M, Zago M, Macaluso E, Lacquaniti F (2008) Vestibular nuclei and cerebellum put visual gravitational motion in context. J Neurophysiol 99:1969–1982

    PubMed  Article  Google Scholar 

  • Montagne G, Laurent M, Durey A, Bootsma R (1999) Movement reversals in ball catching. Exp Brain Res 129:87–92

    PubMed  CAS  Article  Google Scholar 

  • Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3:1322–1328

    PubMed  CAS  Article  Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving visual patterns. In: Pattern recognition mechanisms. Chagas C, Gattass R, Gross C (eds) Vatican Press, Rome, pp 117–151 (Reprinted in Exp Brain Res, Suppl 11, 117–151, 1986)

  • Mrotek LA, Soechting JF (2007) Predicting curvilinear target motion through an occlusion. Exp Brain Res 178:99–114

    PubMed  Article  Google Scholar 

  • Nijhawan R (2008) Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behav Brain Sci 31:179–198

    PubMed  Google Scholar 

  • Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci USA 89:2595–2599

    PubMed  CAS  Article  Google Scholar 

  • Oudejans RR, Michaels CF, Bakker FC (1997) The effects of baseball experience on movement initiation in catching fly balls. J Sports Sci 15:587–595

    PubMed  CAS  Article  Google Scholar 

  • Palmer SE (1999) Vision science. Photons to phenomenology. MIT Press, Cambridge

    Google Scholar 

  • Papaxanthis C, Pozzo T, McIntyre J (2005) Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience 135:371–383

    PubMed  CAS  Article  Google Scholar 

  • Peper L, Bootsma RJ, Mestre DR, Bakker FC (1994) Catching balls: how to get the hand to the right place at the right time. J Exp Psychol Hum Percept Perform 20:591–612

    PubMed  CAS  Article  Google Scholar 

  • Perrone JA, Thiele A (2001) Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4:526–532

    PubMed  CAS  Google Scholar 

  • Port NL, Lee D, Dassonville P, Georgopoulos AP (1997) Manual interception of moving targets. I. Performance and movement initiation. Exp Brain Res 116:406–420

    PubMed  CAS  Article  Google Scholar 

  • Portfors-Yeomans CV, Regan D (1997) Discrimination of the direction and speed of motion in depth of a monocularly visible target from binocular information alone. J Exp Psychol Hum Percept Perform 23:227–243

    PubMed  CAS  Article  Google Scholar 

  • Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67:455–469

    PubMed  CAS  Google Scholar 

  • Preuss T, Osei-Bonsu PE, Weiss SA, Wang C, Faber DS (2006) Neural representation of object approach in a decision-making motor circuit. J Neurosci 26:3454–3464

    PubMed  CAS  Article  Google Scholar 

  • Price NS, Ono S, Mustari MJ, Ibbotson MR (2005) Comparing acceleration and speed tuning in macaque MT: physiology and modeling. J Neurophysiol 94:3451–3464

    PubMed  CAS  Article  Google Scholar 

  • Raiguel SE, Xiao DK, Marcar VL, Orban GA (1999) Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. J Neurophysiol 82:1944–1956

    PubMed  CAS  Google Scholar 

  • Ramachandran VS (1990) Interaction between motion, depth, color and form: the utilitarian theory of perception. In: Blakemore C (ed) Vision: coding and efficiency. Cambridge University Press, Cambridge, pp 347–360

    Google Scholar 

  • Regan D (1982) Visual information channeling in normal and disordered vision. Psychol Rev 89:407–444

    PubMed  CAS  Article  Google Scholar 

  • Regan D (1992) Visual judgements and misjudgements in cricket, and the art of flight. Perception 21:91–115

    PubMed  CAS  Article  Google Scholar 

  • Regan D (1993) Binocular correlates of the direction of motion in depth. Vision Res 33:2359–2360

    PubMed  CAS  Article  Google Scholar 

  • Regan D (1995) Spatial orientation in aviation: visual contributions. J Vestib Res 5:455–471

    PubMed  CAS  Article  Google Scholar 

  • Regan D (1997) Visual factors in hitting and catching. J Sports Sci 15:533–558

    PubMed  CAS  Article  Google Scholar 

  • Regan D (2002) Binocular information about time to collision and time to passage. Vision Res 42:2479–2484

    PubMed  CAS  Article  Google Scholar 

  • Regan D, Beverley KI (1978) Looming detectors in the human visual pathway. Vision Res 18:415–421

    PubMed  CAS  Article  Google Scholar 

  • Regan D, Beverley KI (1979) Binocular and monocular stimuli for motion in depth: changing-disparity and changing-size feed the same motion-in-depth stage. Vision Res 19:1331–1342

    PubMed  CAS  Article  Google Scholar 

  • Regan D, Beverley KI (1980) Visual responses to changing size and to sideways motion for different directions in depth: linearization of visual responses. J Opt Soc Am 11:1289–1296

    Article  Google Scholar 

  • Regan D, Gray R (2000) Visually guided collision avoidance and collision achievement. Trends Cogn Sci 4:99–107

    PubMed  Article  Google Scholar 

  • Regan D, Gray R (2004) A step-by-step approach to research on time-to-contact and time-to-passage. In: Hecht H, Savelsbergh G (eds) Time-to-contact. Advances in psychology series. Elsevier, Amsterdam, pp 173–228

    Chapter  Google Scholar 

  • Regan D, Hamstra SJ (1993) Dissociation of discrimination thresholds for time to contact and for rate of angular expansion. Vision Res 33:447–462

    PubMed  CAS  Article  Google Scholar 

  • Regan D, Kaushal S (1994) Monocular judgement of the direction of motion in depth. Vision Res 34:163–177

    PubMed  CAS  Article  Google Scholar 

  • Regan D, Vincent A (1995) Visual processing of looming and time to contact throughout the visual field. Vision Res 35:1845–1857

    PubMed  CAS  Article  Google Scholar 

  • Regan D, Erkelens CJ, Collewijn H (1986) Necessary conditions for the perception of motion in depth. Invest Ophthalmol Vis Sci 27:584–597

    PubMed  CAS  Google Scholar 

  • Regan D, Hamstra SJ, Kaushal S, Vincent A, Gray R, Beverley KI (1995) Visual processing of the motion of an object in three dimensions for a stationary or a moving observer. Perception 24:87–103

    PubMed  CAS  Article  Google Scholar 

  • Rind FC, Simmons PJ (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J Neurophysiol 68:1654–1666

    PubMed  CAS  Google Scholar 

  • Rind FC, Simmons PJ (1999) Seeing what is coming: building collision-sensitive neurones. Trends Neurosci 22:215–220

    PubMed  CAS  Article  Google Scholar 

  • Rogers BJ, Graham ME (1982) Similarities between motion parallax and stereopsis in human depth perception. Vision Res 22:261–270

    PubMed  CAS  Article  Google Scholar 

  • Rosenbaum DA (1975) Perception and extrapolation of speed and acceleration. J Exp Psychol Hum Percept Perform 1:395–403

    PubMed  CAS  Article  Google Scholar 

  • Rozendaal LA, van Soest AJ (2003) Optical acceleration cancellation: a viable interception strategy? Biol Cybern 89:415–425

    PubMed  CAS  Article  Google Scholar 

  • Runeson S (1974) Constant velocity: not perceived as such. Psychol Res 37:3–23

    PubMed  CAS  Article  Google Scholar 

  • Runeson S, Juslin P, Olsson H (2000) Visual perception of dynamic properties: cue heuristics versus direct-perceptual competence. Psychol Rev 107:525–555

    PubMed  CAS  Article  Google Scholar 

  • Rushton SK, Wann JP (1999) Weighted combination of size and disparity: a computational model for timing a ball catch. Nat Neurosci 2:186–190

    PubMed  CAS  Article  Google Scholar 

  • Salenius S, Portin K, Kajola M, Salmelin R, Hari R (1997) Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 77:3401–3405

    PubMed  CAS  Google Scholar 

  • Savelsbergh GJP, Whiting HTA, Bootsma RJ (1991) Grasping tau. J Exp Psychol Hum Percept Perform 17:315–322

    PubMed  CAS  Article  Google Scholar 

  • Savelsbergh GJ, Whiting HT, Burden AM, Bartlett RM (1992) The role of predictive visual temporal information in the coordination of muscle activity in catching. Exp Brain Res 89:223–228

    PubMed  CAS  Article  Google Scholar 

  • Savelsbergh GJ, Whiting HT, Pijpers JR, van Santvoord AA (1993) The visual guidance of catching. Exp Brain Res 93:148–156

    PubMed  CAS  Article  Google Scholar 

  • Saxberg BVH (1987) Projected free fall trajectories. II: human experiments. Biol Cybern 56:177–184

    PubMed  CAS  Article  Google Scholar 

  • Schlag J, Schlag-Rey M (2002) Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3:191–200

    PubMed  CAS  Article  Google Scholar 

  • Schmerler J (1976) The visual perception of accelerated motion. Perception 5:167–185

    PubMed  CAS  Article  Google Scholar 

  • Senot P, Prevost P, McIntyre J (2003) Estimating time to contact and impact velocity when catching an accelerating object with the hand. J Exp Psychol Hum Percept Perform 29:219–237

    PubMed  Article  Google Scholar 

  • Senot P, Zago M, Lacquaniti F, McIntyre J (2005) Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues. J Neurophysiol 94:4471–4480

    PubMed  Article  Google Scholar 

  • Senot P, Baillet S, Renault B, Berthoz A (2008) Cortical eynamics of anticipatory mechanisms in interception: a neuromagnetic study. J Cogn Neurosci, 27 March [Epub ahead of print]

  • Servos P, Goodale MA (1998) Monocular and binocular control of human interceptive movements. Exp Brain Res 119:92–102

    PubMed  CAS  Article  Google Scholar 

  • Shaffer DM, McBeath MK, Roy WL, Krauchunas SM (2003) A linear optical trajectory informs the fielder where to run to the side to catch fly balls. J Exp Psychol Hum Percept Perform 29:1244–1250

    PubMed  Article  Google Scholar 

  • Shannon CE (1959) Coding theorems for a discrete source with a fidelity criterion. Institute of Radio Engineers, International Convention Record, vol 7 (Part 4, 1959), pp 142–163

  • Sharp RH, Whiting HTA (1975) Information-processing and eye movement behaviour in a ball catching skill. J Hum Mov Stud 1:124–131

    Google Scholar 

  • Shepard RN (1984) Ecological constraints on internal representations: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychol Rev 91:417–447

    PubMed  CAS  Article  Google Scholar 

  • Shepard RN (1994) Perceptual-cognitive universals as reflections of the world. Psych Bull Rev 1:2–28

    Google Scholar 

  • Smeets JB, Brenner E (1995) Perception and action are based on the same visual information: distinction between position and velocity. J Exp Psychol Hum Percept Perform 21:19–31

    PubMed  CAS  Article  Google Scholar 

  • Smeets JB, Brenner E, Trébuchet S, Mestre DR (1996) Is judging time-to-contact based on ‘tau’? Perception 25:583–590

    PubMed  CAS  Article  Google Scholar 

  • Smith MRH, Flach JM, Dittman S, Stanard T (2001) Monocular optical constraints on collision control. J Exp Psychol Hum Percept Perform 27:395–410

    PubMed  CAS  Article  Google Scholar 

  • Smith MA, Majaj NJ, Movshon JA (2005) Dynamics of motion signaling by neurons in macaque area MT. Nat Neurosci 8:220–228

    PubMed  CAS  Article  Google Scholar 

  • Snowden RJ, Braddick OJ (1991) The temporal integration and resolution of velocity signals. Vision Res 31:907–914

    PubMed  CAS  Article  Google Scholar 

  • Stoffregen TA, Riccio GE (1990) Responses to optical looming in the retinal center and periphery. Ecol Psychol 2:251–274

    Article  Google Scholar 

  • Sun H, Frost BJ (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1:296–303

    PubMed  CAS  Article  Google Scholar 

  • Sundberg KA, Fallah M, Reynolds JH (2006) A motion-dependent distortion of retinotopy in area V4. Neuron 49:447–457

    PubMed  CAS  Article  Google Scholar 

  • Teixeira LA, Chua R, Nagelkerke P, Franks IM (2006) Use of visual information in the correction of interceptive actions. Exp Brain Res 175:758–763

    PubMed  Article  Google Scholar 

  • Thiel A, Greschner M, Eurich CW, Ammermuller J, Kretzberg J (2007) Contribution of individual retinal ganglion cell responses to velocity and acceleration encoding. J Neurophysiol 98:2285–2296

    PubMed  Article  Google Scholar 

  • Todd J (1981) Visual information about moving objects. J Exp Psychol Hum Percept Perform 7:795–810

    Article  Google Scholar 

  • Tresilian JR (1993) Four questions of time-to-contact: an analysis of research in interceptive timing. Perception 22:653–680

    PubMed  CAS  Article  Google Scholar 

  • Tresilian JR (1994) Approximate information sources and perceptual variables in interceptive timing. J Exp Psychol Hum Percept Perform 20:154–173

    Article  Google Scholar 

  • Tresilian JR (1995a) Study of a servo-control strategy for projectile interception. Q J Exp Psychol A 48:688–715

    Google Scholar 

  • Tresilian JR (1995b) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Percept Psychophys 57:231–245

    PubMed  CAS  Google Scholar 

  • Tresilian JR (1997) A revised tau hypothesis: consideration of Wann’s (1996) analyses. J Exp Psychol Hum Percept Perform 23:1272–1281

    Article  Google Scholar 

  • Tresilian JR (1999) Visually timed action: time-out for ‘tau’? Trends Cogn Sci 3:301–310

    PubMed  Article  Google Scholar 

  • Tresilian JR (2004) The accuracy of interceptive action in time and space. Exerc Sport Sci Rev 32:167–173

    PubMed  Article  Google Scholar 

  • Tresilian JR (2005) Hitting a moving target: perception and action in the timing of rapid interceptions. Percept Psychophys 67:129–149

    PubMed  Google Scholar 

  • Tresilian JR, Lonergan A (2002) Intercepting a moving target: effects of temporal precision constraints and movement amplitude. Exp Brain Res 142:193–207

    PubMed  Article  Google Scholar 

  • Tresilian JR, Plooy A (2006) Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size. Exp Brain Res 171:421–435

    PubMed  Article  Google Scholar 

  • Trewhella J, Edwards M, Ibbotson MR (2003) Sensitivity to the acceleration of looming stimuli. Clin Exp Ophthalmol 31:258–261

    Article  Google Scholar 

  • Twardy CR, Bingham GP (2002) Causation, causal perception, and conservation laws. Percept Psychophys 64:956–968

    PubMed  Google Scholar 

  • Tyldesley DA, Whiting HTA (1975) Operational timing. J Hum Mov Stud 1:172–177

    Google Scholar 

  • Vallortigara G, Regolin L (2006) Natural-born physicists: a gravity bias in the interpretation of biological motion in visually-inexperienced chicks. Curr Biol 16:R279–R280

    PubMed  CAS  Article  Google Scholar 

  • van Beuzekom AD, Van Gisbergen JAM (2000) Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. J Neurophysiol 84:11–27

    PubMed  Google Scholar 

  • van der Kamp J, Savelsbergh GJP, Smeets JB (1997) Multiple information sources in interceptive timing. Hum Mov Sci 16:787–821

    Article  Google Scholar 

  • van Donkelaar P, Lee RG, Gellman RS (1992) Control strategies in directing the hand to moving targets. Exp Brain Res 91:151–161

    PubMed  Article  Google Scholar 

  • Vatakis A, Spence C (2008) Enhanced audiovisual temporal sensitivity when viewing videos that appropriately depict the effect of gravity on object movement. Exp Brain Res (in revision)

  • Helmholtz H von (1867) Treatise on physiological optics (English translation from 3rd German edition). Dover Publications, New York

    Google Scholar 

  • von Hofsten C, Rosengren K, Pick HL, Neely G (1992) The role of binocular information in ball catching. J Mot Behav 24:329–338

    Google Scholar 

  • Wagner H (1982) Flow field variables trigger landing in flies. Nature 297:147–148

    Article  Google Scholar 

  • Wann JP (1996) Anticipating arrival: is the tau margin a specious theory? J Exp Psychol Hum Percept Perform 22:1031–1048

    PubMed  CAS  Article  Google Scholar 

  • Wann JP, Edgar P, Blair D (1993) Time-to-contact judgment in the locomotion of adults and preschool children. J Exp Psychol Hum Percept Perform 19:1053–1065

    PubMed  CAS  Article  Google Scholar 

  • Watamaniuk SN, Heinen SJ (2003) Perceptual and oculomotor evidence of limitations on processing accelerating motion. J Vis 3:698–709

    PubMed  Article  Google Scholar 

  • Watson JS, Banks MS, von Hofsten C, Royden CS (1992) Gravity as a monocular cue for perception of absolute distance and/or absolute size. Perception 21:69–76

    PubMed  CAS  Article  Google Scholar 

  • Werkhoven P, Snippe HP, Toet A (1992) Visual processing of optic acceleration. Vision Res 32:2313–2329

    PubMed  CAS  Article  Google Scholar 

  • Wollstein JR, Abernethy B (1988) Timing structure in squash strokes: further evidence for the operational timing hypothesis. J Hum Mov Stud 15:61–79

    Google Scholar 

  • Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and problems in motor learning. Trends Cogn Sci 5:487–494

    PubMed  Article  Google Scholar 

  • Yilmaz EH, Warren WH (1995) Visual control of braking: a test of the \( \dot{\tau}_{m} \) hypothesis. J Exp Psychol Hum Percept Perform 21:996–1014

    PubMed  CAS  Article  Google Scholar 

  • Zago M, Lacquaniti F (2005a) Cognitive, perceptual and action-oriented representations of falling objects. Neuropsychologia 43:178–188

    PubMed  Article  Google Scholar 

  • Zago M, Lacquaniti F (2005b) Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth. J Neurophysiol 94:1346–1357

    PubMed  Article  Google Scholar 

  • Zago M, Lacquaniti F (2005c) Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. J Neural Eng 2:S198–S208

    PubMed  Article  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2004) Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. J Neurophysiol 91:1620–1634

    PubMed  Article  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko YP, Lacquaniti F (2005) Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning. J Neurophysiol 93:1055–1068

    PubMed  Article  Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2008) Internal models and prediction of visual gravitational motion. Vision Res 48:1532–1538

    PubMed  Article  Google Scholar 

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86:209–230

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. David Regan for a critical reading of a previous version of this paper. Research was supported by grants from the Italian Space Agency (DCMC grant), the Italian Ministry of University and Research (PRIN grant), the Italian Ministry of Health (RC and RF ISPESL grants), the French Space Agency CNES, and the European Integrated Project contract 001917 (Neurobotics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lacquaniti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zago, M., McIntyre, J., Senot, P. et al. Visuo-motor coordination and internal models for object interception. Exp Brain Res 192, 571–604 (2009). https://doi.org/10.1007/s00221-008-1691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1691-3

Keywords

  • Motor control
  • Timing
  • Motion perception
  • Neural delays
  • Cerebellum
  • Insula
  • Temporo-parietal cortex