Skip to main content
Log in

Algesic agents exciting muscle nociceptors

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Morphologically, muscle nociceptors are free nerve endings connected to the CNS by thin myelinated (group III) or unmyelinated (group IV) afferent fibers. Not all of these endings are nociceptive; approximately 40% have a low mechanical threshold and likely fulfill non-nociceptive functions. Two chemical stimuli are particularly relevant as causes of muscle pain. The first is a drop in tissue pH, i.e. an increase in proton (H+) concentration. A large number of painful patho(physio)logical alterations of muscle tissue are associated with an acidic interstitial pH (e.g. tonic contractions, spasm, inflammation). The second important cause of muscle pain is a release of adenosine triphosphate (ATP). ATP is present in all body cells, but in muscle its concentration is particularly high. Any damage of muscle cells (trauma, necrotic myositis) is accompanied by a release of ATP from the cells. Therefore, ATP is considered a general pain stimulus by some. ATP and protons are relatively specific stimuli for muscle pain; in cutaneous pain they play a less important role. The numerous agents that are released in pathologically altered muscle include substances that desensitize mechanosensitive group IV receptors. Capsaicin has a long-lasting desensitizing action, brain-derived neurotrophic factor, and tumor necrosis factor-α, a short-lasting one. Most of the agents exciting group IV units (e.g. low pH, ATP, capsaicin) activate not only nociceptive endings but also non-nociceptive ones. The only substance encountered that excites exclusively nociceptive group IV receptors is nerve growth factor (NGF). In rat muscle chronically inflamed with complete Freund’s adjuvant, most group IV endings are sensitized to mechanical (and to some) chemical stimuli. However, stimulants such as ATP, NGF, and solutions of low pH were found to be less effective in inflamed muscle. A possible explanation for this surprising finding is that in inflamed muscle the concentrations of ATP and NGF and H+ are increased. Therefore, experimental administration of these agents is a less effective stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambalavanar R, Moritani M, Dessem D (2005) Trigeminal P2X3 receptor expression differs from dorsal root ganglion and is modulated by deep tissue inflammation. Pain 117:280–291

    Article  PubMed  CAS  Google Scholar 

  • Babenko V, Graven-Nielsen T, Svensson P, Drewes AM, Jensen TS, Arendt-Nielsen L (1999) Experimental human muscle pain and muscular hyperalgesia induced by combinations of serotonin and bradykinin. Pain 82:1–8

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Cairns BE, Hu JW, Arendt-Nielsen L, Sessle BJ, Svensson P (2001) Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol 86:782–791

    PubMed  CAS  Google Scholar 

  • Cairns BE, Gambarota G, Svensson P, Arendt-Nielsen L, Berde CB (2002) Glutamate-induced sensitization of rat masseter muscle fibers. Neuroscience 109:389–399

    Article  PubMed  CAS  Google Scholar 

  • Cairns BE, Svensson P, Wang K, Hupfeld S, Graven-Nielsen T, Sessle BJ, Berde CB, Arendt-Nielsen L (2003) Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J Neurophysiol 90:2098–2105

    Article  PubMed  CAS  Google Scholar 

  • Cairns BE, Dong XD, Mann MK, Svensson P, Sessle BJ, Arendt-Nielsen L, McErlane KM (2007) Systemic administration of monosodium glutamate elevates intramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers. Pain 132:33–41

    Article  PubMed  CAS  Google Scholar 

  • Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23:617–624

    Article  PubMed  CAS  Google Scholar 

  • Connor M, Naves LA, McCleskey EW (2005) Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain 1:31–41

    Article  PubMed  CAS  Google Scholar 

  • Dong XD, Mann MK, Sessle BJ, Arendt-Nielsen L, Svensson P, Cairns BE (2006) Sensitivity of rat temporalis muscle afferent fibers to peripheral N-methyl-D-aspartate receptor activation. Neuroscience 141:939–945

    Article  PubMed  CAS  Google Scholar 

  • Dong XD, Mann MK, Kumar U, Svensson P, Arendt-Nielsen L, Hu JW, Sessle BJ, Cairns BE (2007) Sex-related differences in glutamate evoked rat muscle nociceptor discharge result from estrogen-mediated modulation of peripheral NMDA receptors. Neuroscience 146:822–832

    Article  PubMed  CAS  Google Scholar 

  • Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice AS, Stacey BR, Treede RD, Turk DC, Wallace MS (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132:237–251

    Article  PubMed  CAS  Google Scholar 

  • Ernberg M, Hedenberg-Magnusson B, Alstergren P, Kopp S (1999) The level of serotonin in the superficial masseter muscle in relation to local pain and allodynia. Life Sci 65:313–325

    Article  PubMed  CAS  Google Scholar 

  • Ernberg M, Hedenberg-Magnusson B, Kurita H, Kopp S (2006) Effects of local serotonin administration on pain and microcirculation in the human masseter muscle. J Orofac Pain 20:241–248

    PubMed  Google Scholar 

  • Fock S, Mense S (1976) Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res 105:459–469

    Article  PubMed  CAS  Google Scholar 

  • Frey Law LA, Sluka KA, Hunstad T, Lee J, Graven-Nielsen T (2007). Primary and referred experimental muscle pain produces ipsilateral mechanical hyperalgesia. In: American Pain Society Annual Meeting, Washington DC

  • Ge HY, Madeleine P, Arendt-Nielsen L (2005) Gender differences in pain modulation evoked by repeated injections of glutamate into the human trapezius muscle. Pain 113:134–140

    Article  PubMed  CAS  Google Scholar 

  • Goodman MB, Lumpkin EA, Ricci A, Tracey WD, Kernan M, Nicolson T (2004) Molecules and mechanisms of mechanotransduction. J Neurosci 24:9220–9222

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T (2006) Fundamentals of muscle pain, referred pain and deep tissue hyperalgesia. Scand J Rheumatol 35(Suppl. 122):1–43

    Article  Google Scholar 

  • Graven-Nielsen T, Mense S, Arendt-Nielsen L (2004) Painful and non-painful pressure sensations from human skeletal muscle. Exp Brain Res 59:273–283

    Article  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Hanna RL, Kaufman MP (2004) Activation of thin-fiber muscle afferents by a P2X agonist in cats. J Appl Physiol 96:1166–1169

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Reinöhl J, Unger T, Mense S (2004) Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat. Pain 110:149–157

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2007) Sensitization of rat dorsal horn neurones by NGF-induced subthreshold potentials and low-frequency activation. A study employing intracellular recordings in vivo. Brain Res 1169:34–43

    Article  PubMed  CAS  Google Scholar 

  • Hood VL, Schubert C, Keller U, Muller S (1988) Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise. Am J Physiol 255:F479–F485

    PubMed  CAS  Google Scholar 

  • Hostens I, Ramon H (2005) Assessment of muscle fatigue in low level monotonous task performance during car driving. J Electromyogr Kinesiol 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Hu WP, Li XM, Wu JL, Zheng M, Li ZW (2005) Bradykinin potentiates 5-HT3 receptor-mediated current in rat trigeminal ganglion neurons. Acta Pharmacol Sin 26:428–434

    Article  PubMed  CAS  Google Scholar 

  • Huang GJ, LeResche L, Critchlow CW, Martin MD, Drangsholt MT (2002) Risk factors for diagnostic subgroups of painful temporomandibular disorders (TMD). J Dent Res 81:284–288

    Article  PubMed  CAS  Google Scholar 

  • Issberner U, Reeh PW, Steen KH (1996) Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 208:191–194

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Norup M (1992) Experimental pain in human temporal muscle induced by hypertonic saline, potassium and acidity. Cephalalgia 12:101–106

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Tuxen C, Pedersen-Bjergaard U, Jansen I, Edvinsson L, Olesen J (1990) Pain and tenderness in human temporal muscle induced by bradykinin and 5-hydroxytryptamine. Peptides 11:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MP, Iwamoto GA, Longhurst JC, Mitchell JH (1982) Effects of capsaicin and bradykinin on afferent fibers with ending in skeletal muscle. Circ Res 50:133–139

    PubMed  CAS  Google Scholar 

  • Kellgren JH (1937–38) Observations on referred pain arising from muscle. Clin Sci 3:175–190

    Google Scholar 

  • Kniffki K, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 31:511–522

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa T (1996) The polymodal receptor; bio-warning and defense system. In: Kumazawa T, Kruger L, Mizumura K (eds) Progress in brain research, vol 113. Elsevier Science, Amsterdam, pp 3–18

    Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol (Lond) 273:179–194

    CAS  Google Scholar 

  • Lawand NB, McNearney T, Westlund KN (2000) Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86:69–74

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Ro JY (2007) Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms. Neuroscience 146:375–383

    Article  PubMed  CAS  Google Scholar 

  • LeResche L, Mancl L, Sherman JJ, Gandara B, Dworkin SF (2003) Changes in temporomandibular pain and other symptoms across the menstrual cycle. Pain 106:253–261

    Article  PubMed  Google Scholar 

  • Lewin GR, Ritter AM, Mendell LM (1993) Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. Neuroscience 13:2136–2148

    PubMed  CAS  Google Scholar 

  • Light AR, Perl ER (2003) Unmyelinated afferent fibers are not only for pain anymore. J Comp Neurol 461:137–139

    Article  PubMed  Google Scholar 

  • Makowska A, Panfil C, Ellrich J (2005) Long-term potentiation of orofacial sensorimotor processing by noxious input from the semispinal neck muscle in mice. Cephalalgia 25:109–116

    Article  PubMed  CAS  Google Scholar 

  • Mann MK, Dong XD, Svensson P, Cairns BE (2006) Influence of intramuscular nerve growth factor injection on the response properties of rat masseter muscle afferent fibers. J Orofacial Pain 20:325–336

    PubMed  Google Scholar 

  • Marchettini P, Simone DA, Caputi G, Ochoa JL (1996) Pain from excitation of identified muscle nociceptors in humans. Brain Res 740:109–116

    Article  PubMed  CAS  Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond) 224:173–186

    CAS  Google Scholar 

  • Menétrey J, Kasemkijwattana C, Day CS et al (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82:131–137

    Article  PubMed  Google Scholar 

  • Mense S (1977) Nervous outflow from skeletal muscle following chemical noxious stimulation. J Physiol (Lond) 267:75–88

    CAS  Google Scholar 

  • Mense S (1981) Sensitization of group IV muscle receptors to bradykinin by 5-hydroxytryptamine and prostaglandin E2. Brain Res 225:95–105

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1982) Reduction of the bradykinin-induced activation of feline group III and IV muscle receptors by acetylsalicylic acid. J Physiol (Lond) 326:269–283

    CAS  Google Scholar 

  • Mense S (2007) Muscle pain model, ischemia-induced and hypertonic saline-induced. In: Schmidt RF, Willis WD (eds) Encyclopedia of pain. Springer Verlag, Berlin Heidelberg, pp 1219–1222

    Chapter  Google Scholar 

  • Mense S, Meyer H (1988) Bradykinin-induced modulation of the response behavior of different types of feline group III and IV muscle receptors. J Physiol (Lond) 398:49–63

    CAS  Google Scholar 

  • Mok E, Mann MK, Dong XD, Cairns BE (2005) Local anaesthetic-like effects of diclofenac on muscle nociceptors. Pain Res Manag 10:95

    Google Scholar 

  • Molliver DC, Immke DC, Fierro L, Pare M, Rice FL, McCleskey EW (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35

    Article  PubMed  CAS  Google Scholar 

  • Mörk H, Ashina M, Bendtsen L, Olesen J, Jensen R (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153

    Article  PubMed  CAS  Google Scholar 

  • Nekora-Azak A, Evlioglu G, Ordulu M, Işsever H (2006) Prevalence of symptoms associated with temporomandibular disorders in a Turkish population. J Oral Rehabil 33:81–84

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy CT, Connor HE, Feniuk W (1993) Extracellular recordings of membrane potential from guinea-pig isolated trigeminal ganglion: lack of effect of sumatriptan. Cephalalgia 13:175–179

    Article  PubMed  Google Scholar 

  • Paintal JS (1960) Functional analysis of group III afferent fibres of mammalian muscles. J Physiol (Lond) 152:250–270

    CAS  Google Scholar 

  • Pan JW, Hamm JR, Rothman DL, Shulman RG (1988) Intracellular pH in human skeletal muscle by 1H NMR. Proc Natl Acad Sci USA 85:7836–7839

    Article  PubMed  CAS  Google Scholar 

  • Pelkey KA, Marshall KC (1998) Actions of excitatory amino acids on mesencephalic trigeminal neurons. Can J Physiol Pharmacol 76:900–908

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Kelly D (1993) Induction of bradykinin-B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110:1441–1444

    PubMed  CAS  Google Scholar 

  • Petty BG, Cornblath DR, Adornato BT, Chaudhry V, Flexner C, Wachsman M, Sinicropi D, Burton LE, Peroutka SJ (1994) The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol 36:244–246

    Article  PubMed  CAS  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  PubMed  CAS  Google Scholar 

  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. Prog Brain Res 113:143–151

    Article  PubMed  CAS  Google Scholar 

  • Rees H, Sluka KA, Westlund KN, Willis WD (1994) Do dorsal root reflexes augment peripheral inflammation? Neuroreport 21:821–824

    Article  Google Scholar 

  • Reinöhl J, Hoheisel U, Unger T, Mense S (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in the rat. Neurosci Lett 338:25–28

    Article  PubMed  Google Scholar 

  • Revici E, Stoopen E, Frenk E, Ravich RA (1949) The painful focus. II. The relation of pain to local physiochemical changes. Bull Inst Appl Biol 1:21–38

    Google Scholar 

  • Ro JY, Capra NF, Masri R (2003) Development of a behavioral assessment of craniofacial muscle pain in lightly anesthetized rats. Pain 104:179–185

    Article  PubMed  Google Scholar 

  • Ro JY, Nies M, Zhang Y (2005) The role of peripheral N-methyl-D-aspartate receptors in muscle hyperalgesia. Neuroreport 16:485–489

    Article  PubMed  CAS  Google Scholar 

  • Ro JY, Capra NF, Lee JS, Masri R, Chun YH (2007) Hypertonic saline-induced muscle nociception and c-fos activation are partially mediated by peripheral NMDA receptors. Eur J Pain 11:398–405

    Article  PubMed  CAS  Google Scholar 

  • Rollman GB, Lautenbacher S (2001) Sex differences in musculoskeletal pain. Clin J Pain 17:20–24

    Article  PubMed  CAS  Google Scholar 

  • Rosendal L, Larsson B, Kristiansen J, Peolsson M, Søgaard K, Kjær M, Sørensen J, Gerdle B (2004) Increase in muscle nociceptive substances and anaerobic metabolism in patients with trapezius myalgia: microdialysis in rest and during exercise. Pain 112:324–334

    Article  PubMed  CAS  Google Scholar 

  • Rotto DM, Hill JM, Schultz HD, Kaufman MP (1990) Cyclooxygenase blockade attenuates responses of group IV muscle afferents to static contraction. Am J Physiol 259:H745–H750

    PubMed  CAS  Google Scholar 

  • Shah JP, Phillips TM, Danoff JV, Gerber LH (2005) An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol 99:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Simon SA, de Araujo IE (2005) The salty and burning taste of capsaicin. J Gen Physiol 125:531–534

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24:37–46

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, Audette KM, Yeomans DC, Wilson SP (2007) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129:102–112

    Article  PubMed  Google Scholar 

  • Steen KH, Wegner H, Meller ST (2001) Analgesic profile of peroral and topical ketoprofen upon low pH-induced muscle pain. Pain 93:23–33

    Article  PubMed  CAS  Google Scholar 

  • Sung D, Dong XD, Ernberg M, Kumar U, Cairns BE (2007) Serotonin (5-HT) excites rat masticatory muscle afferent fibers through activation of peripheral 5-HT3 receptors. Pain 134:41–50

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Arendt-Nielsen L, Nielsen H, Larsen JK (1995) Effect of chronic and experimental jaw muscle pain on pain-pressure thresholds and stimulus-response curves. J Orofac Pain 9:347–356

    PubMed  CAS  Google Scholar 

  • Svensson P, Cairns BE, Wang K, Arendt-Nielsen L (2003) Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104:241–247

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Wang K, Arendt-Nielsen L, Cairns BE, Sessle BJ (2005) Pain effects of glutamate injections into human jaw or neck muscles. J Orofac Pain 19:109–118

    PubMed  Google Scholar 

  • Tang B, Ji Y, Traub RJ (2008) Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain 137:540–549

    Article  PubMed  CAS  Google Scholar 

  • Tegeder L, Zimmermann J, Meller ST, Geisslinger G (2002) Release of algesic substances in human experimental muscle pain. Inflamm Res 51:393–402

    Article  PubMed  CAS  Google Scholar 

  • Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    Article  PubMed  CAS  Google Scholar 

  • Wolfe F, Russell IJ, Vipraio G, Ross K, Anderson J (1997) Serotonin levels, pain threshold, and fibromyalgia symptoms in the general population. J Rheumatol 24:555–559

    PubMed  CAS  Google Scholar 

  • Wong EHF, Kemp JA (1991) Sites for antagonism on the N-methyl-D-aspartate receptor channel complex. Annu Rev Pharmacol Toxicol 31:401–425

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mense.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mense, S. Algesic agents exciting muscle nociceptors. Exp Brain Res 196, 89–100 (2009). https://doi.org/10.1007/s00221-008-1674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1674-4

Keywords

Navigation