Skip to main content
Log in

Adaptation of sound localization induced by rotated visual feedback in reaching movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A visuo-motor adaptation task was used to investigate the effects of this adaptation on the auditory-motor representation during reaching movements. We show that, following exposure to a rotated screen cursor-hand relationship, the movement paths during auditory conditions exhibited a similar pattern of aftereffects as those observed during movements to visual targets, indicating that the newly formed model of visuo-motor transformations for hand movement was available to the auditory-motor network for planning the hand movements. This plasticity in human sound localization does not require active cross-modal experience, and retention tests indicated that the newly formed internal model does not reside primarily within the central auditory system as suggested in past studies examining the plasticity of sound localization to distorted spatial vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeele S, Bock O (2001) Mechanisms for sensorimotor adaptation to rotated visual input. Exp Brain Res 139:248–253

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Buneo CA (2003) Sensorimotor integration in posterior parietal cortex. Adv Neurol 93:159–177

    PubMed  Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260

    Article  PubMed  CAS  Google Scholar 

  • Bock O (2003) Sensorimotor adaptation to visual distortions with different kinematic coupling. Exp Brain Res 151:557–560

    Article  PubMed  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  PubMed  CAS  Google Scholar 

  • Burnod Y, Baraduc P, Battaglia-Mayer A, Guigon E, Koechlin E, Ferraina S, Lacquaniti F, Caminiti R (1999) Parieto-frontal coding of reaching: an integrated framework. Exp Brain Res 129:325–346

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Andersen RA (2000) Reaches to sounds encoded in an eye-centered reference frame. Neuron 27:647–652

    Article  PubMed  CAS  Google Scholar 

  • Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153:140–145

    Article  PubMed  Google Scholar 

  • Contreras-Vidal JL, Kerick SE (2004) Independent component analysis of dynamic brain responses during visuomotor adaptation. Neuroimage 21:936–945

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    Article  PubMed  CAS  Google Scholar 

  • Duhamel JR (2002) Multisensory integration in cortex: shedding light on prickly issues. Neuron 34:493–495

    Article  PubMed  CAS  Google Scholar 

  • Fenn KM, Nusbaum HC, Margoliash D (2003) Consolidation during sleep of perceptual learning of spoken language. Nature 425:614–616

    Article  PubMed  CAS  Google Scholar 

  • Fu KM, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23:7510–7515

    PubMed  CAS  Google Scholar 

  • Girgenrath M, Bock O, Seitz RJ (2008) An fMRI study of brain activation in a visual adaptation task: activation limited to sensory guidance. Exp Brain Res 184:561–569

    Article  PubMed  Google Scholar 

  • Graziano MS, Gandhi S (2000) Location of the polysensory zone in the precentral gyrus of anesthetized monkeys. Exp Brain Res 135:259–266

    Article  PubMed  CAS  Google Scholar 

  • Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594

    PubMed  CAS  Google Scholar 

  • Hyvarinen J, Shelepin Y (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res 169:561–564

    Article  PubMed  CAS  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561

    Article  PubMed  CAS  Google Scholar 

  • Keuroghlian AS, Knudsen EI (2007) Adaptive auditory plasticity in developing and adult animals. Prog Neurobiol 82:109–121

    Article  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230:545–548

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Magescas F, Prablanc C (2006) Automatic drive of limb motor plasticity. J Cogn Neurosci 18:75–83

    Article  PubMed  CAS  Google Scholar 

  • Pouget A, Ducom JC, Torri J, Bavelier D (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83:1–11

    Article  Google Scholar 

  • Schroeder CE, Smiley J, Fu KG, McGinnis T, O’Connell MN, Hackett TA (2003) Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int J Psychophysiol 50:5–17

    Article  PubMed  Google Scholar 

  • Schwartz AB, Moran DW, Reina GA (2004) Differential representation of perception and action in the frontal cortex. Science 303:380–383

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge

    Google Scholar 

  • Simani MC, McGuire LM, Sabes PN (2007) Visual-shift adaptation is composed of separable sensory and task-dependent effects. J Neurophysiol 98:2827–2841

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed  Google Scholar 

  • Zwiers MP, Van Opstal AJ, Paige GD (2003) Plasticity in human sound localization induced by compressed spatial vision. Nat Neurosci 6:175–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH R01HD42527 and NIH RO3HD050372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian A. Kagerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagerer, F.A., Contreras-Vidal, J.L. Adaptation of sound localization induced by rotated visual feedback in reaching movements. Exp Brain Res 193, 315–321 (2009). https://doi.org/10.1007/s00221-008-1630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1630-3

Keywords

Navigation