Skip to main content

Advertisement

Log in

Selective lesion of medial septal cholinergic neurons followed by a mini-stroke impairs spatial learning in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Reduced levels of hippocampal acetylcholine are a common finding in patients diagnosed with Alzheimer’s disease, but it remains unclear what role this depletion plays in the development of dementia. It is possible that the reduced levels of acetylcholine increases the vulnerability of hippocampal neurons to future insults which could lead to neuronal death and cognitive impairment. One insult that is commonly observed in the demented elderly and often co-exists with Alzheimer’s disease is stroke. In the current experiment, we used the immunotoxin 192 IgG-Saporin to specifically lesion the cholinergic neurons of the medial septum that project to the hippocampus. We then explored the effects of small, localised strokes in the hippocampus on spatial learning and memory. The combination of cholinergic depletion and stroke resulted in significant impairment on the spatial water maze compared to the performance of rats receiving either factor alone. Quantification of hippocampal damage revealed no difference in the overall lesion size of stroke-only or combined (cholinergic depletion and stroke) rats, suggesting that a more subtle mechanism is responsible for the observed impairment. We propose that healthy hippocampal neurons may normally be able to withstand, and compensate for a small ischemic insult. However, in the absence of cholinergic projections from the medial septum, these compensatory processes in the hippocampus may be compromised resulting in the spatial learning impairment reported here. This suggests an association between the cholinergic depletion observed during aging and the potential for functional recovery following stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

ANOVA:

Analysis of variance

BDNF:

Brain-derived neurotrophic factor

ChAT:

Choline acetyltransferase

DAB:

Diaminobenzidine

GABA:

γ-Aminobutyric acid

IgG-SAP:

192 IgG-Saporin

MS/VDM:

Medial septum and vertical limb of the diagonal band of Broca

NGF:

Nerve growth factor

PBS:

Phosphate buffered saline

PFA:

Paraformaldehyde

References

  • Akaike A, Tamura Y, Yokota T, Shimohama S, Kimura J (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-d-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 644(2):181–187

    Article  PubMed  CAS  Google Scholar 

  • Back T, Hemmen T, Schuler OG (2004) Lesion evolution in cerebral ischemia. J Neurol 251:388–397

    Article  PubMed  Google Scholar 

  • Baxter MG, Bucci DJ, Gorman LK, Wiley RG, Gallagher M (1995) Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats. Behav Neurosci 109(4):714–722

    Article  PubMed  CAS  Google Scholar 

  • Beach TG, Honer WG, Hughes LH (1997) Cholinergic fibre loss associated with diffuse plaques in the non-demented elderly: the preclinical stage of Alzheimer’s disease? Acta Neuropathol 93(2):146–153

    Article  PubMed  CAS  Google Scholar 

  • Bellucci A, Luccarini I, Scali C, Prosperi C, Giovannini MG, Pepeu G, Casamenti F (2006) Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice. Neurobiol Dis 23(2):260–272

    Article  PubMed  CAS  Google Scholar 

  • Bizon JL, Han J-S, Hudon C, Gallagher M (2003) Effects of hippocampal cholinergic deafferentation on learning strategy selection in a visible platform version of the water maze. Hippocampus 13:676–684

    Article  PubMed  CAS  Google Scholar 

  • Boncristiano S, Calhoun ME, Kelly PH, Pfeifer M, Bondolfi L, Stalder M, Phinney AL, Abramowski D, Sturchler-Pierrat C, Enz A, Sommer B, Staufenbiel M, Jucker M (2002) Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. J Neurosci 22(8):3234–3243

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Shytle RD, Ross SD, Shimizu T, Freeman TB, Cahill DW, Sandberg PR (1995) Nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp Neurol 136:261–265

    Article  PubMed  CAS  Google Scholar 

  • Choi S-A, Kim EH, Lee JY, Nam HS, Kim SH, Kim GW, Lee BI, Heo JH (2007) Preconditioning with chronic cerebral hypoperfusion reduces a focal cerebral ischemic injury and increases apurinic/apyrimidinic endonuclease/redox factor-1 and matrix metalloproteinase-2 expression. Curr Neurovasc Res 4:89–97

    Article  PubMed  CAS  Google Scholar 

  • Courtney C, Farrell D, Gray R, Hills R, Lynch L, Sellwood E, Edwards S, Hardyman W, Raftery J, Crome P, Lendon C, Shaw H, Benham P, AD2000 Collaborative Group (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomized double-blind trial. Lancet 363(9427):2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Cooper-Kuhn CM, Winkler J, Kuhn HG (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 77:155–165

    Article  PubMed  CAS  Google Scholar 

  • Craig LA, Hong NS, Kopp J, McDonald RJ (2008a) Emergence of spatial impairment in rats following specific cholinergic depletion of the medial septum combined with chronic stress. Eur J Neurosci 27:2262–2271

    Article  PubMed  Google Scholar 

  • Craig LA, Hong NS, Kopp J, McDonald RJ (2008b) Reduced cholinergic status in hippocampus produces spatial memory deficits when combined with kainic acid induced seizures. Hippocampus (epub ahead of print)

  • Dajas-Bailador FA, Lima PA, Wonnacott S (2000) The α7 nicotinic acetylcholine receptor subtype mediates nicotinic protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharmacology 39:2799–2807

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 8000:1403

    Article  Google Scholar 

  • Doody RS, Dunn JK, Clark CM, Farlow M, Foster NL, Liao T, Gonzales N, Lai E, Massman P (2001) Chronic donepezil treatment is associated with slowed cognitive decline in Alzhimer’s disease. Dement Geriatr Cogn Disord 12(4):295–300

    Article  PubMed  CAS  Google Scholar 

  • Driscoll I, Hong NS, Craig LA, Sutherland RJ, McDonald RJ (2007) Enhanced cell death and learning deficits after a mini-stroke in aged hippocampus. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2007.04.025

  • Fischer W, Chen KS, Gage FH, Bjorklund A (1991) Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol Aging 13:9–23

    Article  Google Scholar 

  • French SJ, Humby T, Horner CH, Sofroniew MV, Rattray M (1999) Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Mol Brain Res 67:124–136

    Article  PubMed  CAS  Google Scholar 

  • Frick KM, Kim JJ, Baxter MG (2004) Effects of complete immunotoxin lesions of cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus 14:244–254

    Article  PubMed  CAS  Google Scholar 

  • Frielingsdorf H, Thal LJ, Pizzo DP (2006) The septohippocampal cholinergic system and spatial working memory in the Morris water maze. Behav Brain Res 168(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Fujiki M, Kobayashi H, Uchida S, Inoue R, Ishii K (2005) Neuroprotective effect of donepezil, a nicotinic acetylcholine-receptor activator, on cerebral infarction in rats. Brain Res 1043:236–241

    Article  PubMed  CAS  Google Scholar 

  • Gabriel EM, Inglefield JR, Chadwick LE, Schawartz-Bloom RD (1998) Ischemic injury and extracellular amino acid accumulation in hippocampal area CA1 are not dependent upon an intact septo-hippocampal pathway. Brain Res 785:279–286

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, Colombo PJ (1995) Aging: the cholinergic hypothesis of cognitive decline. Curr Opin Neurobiol 5:161–168

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez CLR, Gharbawie OA, Kolb B (2006) Chronic low-dose administration of nicotine facilitates recovery and synaptic change after focal ischemia in rats. Neuropharmacology 50:777–787

    Article  PubMed  CAS  Google Scholar 

  • Grau-Olivares M, Bartres-Faz D, Arboix A, Soliva JC, Rovira M, Targa C, Junque C (2007) Mild cognitive impairment after lacunar infarction: voxel-based morphometry and neuropsychological assessment. Cerebrovasc Dis 23(5–6):353–361

    Article  PubMed  Google Scholar 

  • Heckers S, Ohtake T, Wiley RG, Lappi DA, Geula C, Mesulam MM (1994) Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci 14:1271–1289

    PubMed  CAS  Google Scholar 

  • Honkaniemi J, Massa SM, Breckinridge M, Sharp FR (1996) Global ischemia induces apoptosis-associated genes in hippocampus. Mol Brain Res 42:79–88

    Article  PubMed  CAS  Google Scholar 

  • Janis LS, Glasier MM, Fulop Z, Stein DG (1998) Intraseptal injections of 192-IgG saporin produce deficits for strategy selection in spatial-memory tasks. Behav Brain Res 90:23–34

    Article  PubMed  CAS  Google Scholar 

  • Jaspers RMA, Block F, Heim C, Sontag KH (1990) Spatial learning is affected by transient occlusion of common carotid arteries (2VO): comparison of behavioural and histopathological changes after ‘2VO’ and ‘four-vessel-occlusion’ in rats. Neurosci Lett 117:149–153

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim EH, Lee BI, Heo JH (2008) Chronic cerebral hypoperfusion protects against acute focal ischemia, improves motor function, and results in vascular remodeling. Curr Neurovasc Res 5:28–36

    Article  PubMed  Google Scholar 

  • Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208

    Article  PubMed  CAS  Google Scholar 

  • Kiyota Y, Miyamoto M, Nagaoka A (1991) Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Res 538:295–302

    Article  PubMed  CAS  Google Scholar 

  • Knipper M, da Penha Berzaghi M, Blochl A, Breer H, Thoenen H, Lindholm D (1994) Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci 6:668–671

    Article  PubMed  CAS  Google Scholar 

  • Lemstra AW, Richard E, van Gool WA (2007) Cholinesterase inhibitors in dementia: yes, no, or maybe? Age Ageing 36(6):625–627

    Article  PubMed  Google Scholar 

  • Marston HM, Everitt BJ, Robbins TW (1993) Comparative effects of excitotoxic lesions of the hippocampus and septum/diagonal band on conditional visual discrimination and spatial learning. Neuropsychologia 31(10):1099–1118

    Article  PubMed  CAS  Google Scholar 

  • McDonald RJ (2002) Multiple combinations of co-factors produce variants of age-related cognitive decline: a theory. Can J Exp Psychol 56(3):221–339

    PubMed  Google Scholar 

  • McDonald RJ, White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61(3):260–270

    Article  PubMed  CAS  Google Scholar 

  • McDonald RJ, Hong NS, Craig LA, Holahan MR, Louis M, Muller RU (2005) NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus. Eur J Neurosci 22:1201–1213

    Article  PubMed  Google Scholar 

  • McDonald RJ, Craig LA, Hong NS (2008) Enhanced cell death in hippocampus and emergence of cognitive impairments following a localized mini-stroke in hippocampus if preceded by a previous episode of acute stress. Eur J Neurosci 27(8):2197–2209

    Article  PubMed  Google Scholar 

  • Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11:43–49

    Article  PubMed  Google Scholar 

  • Mohapel P, Leanza G, Kokaia M, Lindvall O (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26:939–946

    Article  PubMed  CAS  Google Scholar 

  • Nedelmann M, Wilhelm-Schwenkmezger T, Alessandri B, Heimann A, Schneider F, Eicke BM, Dieterich M, Kempski O (2007) Cerebral embolic ischemia in rats: correlation of stroke severity and functional deficit as important outcome parameter. Brain Res 1130:188–196

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Johnson M, Kerwin JM, Piggott MA, Court JA, Shaw PJ, Ince PG, Brown A, Perry RH (1992) Convergent cholinergic activities in aging and Alzheimer’s disease. Neurobiol Aging 13:393–400

    Article  PubMed  CAS  Google Scholar 

  • Scheinder JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 1(1):1–8

    Google Scholar 

  • Shi J, Yang SH, Stubley L, Day AL, Simpkins JW (2000) Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res 853:1–4

    Article  PubMed  CAS  Google Scholar 

  • Snowden DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR (1997) Brain infarction and the clinical expression of Alzheimer’s disease: the nun study. JAMA 277(10):813–817

    Article  Google Scholar 

  • Song IU, Kim JS, Kim YI, Eah KY, Lee KS (2007) Clinical significance of silent cerebral infarctions in patients with Alzheimer’s disease. Cogn Behav Neurol 20:93–98

    Article  PubMed  Google Scholar 

  • Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H, Akaike A (2003) Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306(2):772–777

    Article  PubMed  CAS  Google Scholar 

  • Vermeer SE, Longstreth WT Jr, Koudstaal PJ (2007) Silent brain infarcts: a systematic review. Lancet Neurol 6(7):611–619

    Article  PubMed  Google Scholar 

  • Waite JJ, Thal LJ (1996) Lesions of the cholinergic nuclei in the rat basal forebrain: excitotoxic vs. an immunotoxin. Life Sci 58(22):1947–1953

    Article  PubMed  CAS  Google Scholar 

  • Waite JJ, Holschneider DP, Scremin OU (1999) Selective immuno-toxin induced cholinergic deafferentation alters blood flow distribution in the cerebral cortex. Brain Res 818:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wahl F, Allix M, Plotkine M, Boulu RG (1992) Neurological and behavioural outcomes of focal ischemia in rats. Stroke 23:267–272

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Suzuki M, Yamamoto M (1995) YM796, a novel muscarinic agonist, improves the impairment of learning behaviour in a rat model of chronic focal cerebral ischemia. Brain Res 669:107–114

    Article  PubMed  CAS  Google Scholar 

  • Zenardi A, Ferrari R, Leo G, Maskos U, Changeux P, Zoli M (2007) Loss of high-affinity nicotinic receptors increases vulnerability to excitotoxic lesion and decreases positive effects of an enriched environment. FASEB 21:4028–4037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Robert McDonald is currently a Canada Research Chair. This research was supported by grants awarded to RJM from the Canadian Stroke Network, and Natural Sciences and Engineering Research Council agencies; and to LAC from the Alzheimer’s Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, L.A., Hong, N.S., Kopp, J. et al. Selective lesion of medial septal cholinergic neurons followed by a mini-stroke impairs spatial learning in rats. Exp Brain Res 193, 29–42 (2009). https://doi.org/10.1007/s00221-008-1592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1592-5

Keywords

Navigation