Advertisement

Experimental Brain Research

, Volume 190, Issue 2, pp 215–223 | Cite as

Brain motor system function in a patient with complete spinal cord injury following extensive brain–computer interface training

  • Christian EnzingerEmail author
  • Stefan Ropele
  • Franz Fazekas
  • Marisa Loitfelder
  • Faton Gorani
  • Thomas Seifert
  • Gudrun Reiter
  • Christa Neuper
  • Gert Pfurtscheller
  • Gernot Müller-Putz
Research Article

Abstract

Although several features of brain motor function appear to be preserved even in chronic complete SCI, previous functional MRI (fMRI) studies have also identified significant derangements such as a strongly reduced volume of activation, a poor modulation of function and abnormal activation patterns. It might be speculated that extensive motor imagery training may serve to prevent such abnormalities. We here report on a unique patient with a complete traumatic SCI below C5 who learned to elicit electroencephalographic signals β-bursts in the midline region upon imagination of foot movements. This enabled him to use a neuroprosthesis and to “walk from thought” in a virtual environment via a brain–computer interface (BCI). We here used fMRI at 3T during imagined hand and foot movements to investigate the effects of motor imagery via persistent BCI training over 8 years on brain motor function and compared these findings to a group of five untrained healthy age-matched volunteers during executed and imagined movements. We observed robust primary sensorimotor cortex (SMC) activity in expected somatotopy in the tetraplegic patient upon movement imagination while such activation was absent in healthy untrained controls. Sensorimotor network activation with motor imagery in the patient (including SMC contralateral to and the cerebellum ipsilateral to the imagined side of movement as well as supplementary motor areas) was very similar to the pattern observed with actual movement in the controls. We interpret our findings as evidence that BCI training as a conduit of motor imagery training may assist in maintaining access to SMC in largely preserved somatopy despite complete deafferentation.

Keywords

Functional MRI Motor recovery Brain–computer interface Spinal cord injury Motor imagery 

Notes

Acknowledgments

This work has been supported by the FWF Austrian Science Fund (SR, grant number P15158), “Lorenz Böhler Gesellschaft” and “Allgemeine Unfallversicherung AUVA” (GP, G-M P). We thank the patient for his enthusiasm with the BCI training and this project and Karin Brodtrager for technical assistance.

Conflict of interest:

None declared.

References

  1. Alkadhi H, Brugger P, Boendermaker SH, Crelier G, Curt A, Hepp-Reymond M-C, Kollias SS (2005) What disconnection tells about motor imagery: evidence from paraplegic patients. Cereb Cortex 15:131–140PubMedCrossRefGoogle Scholar
  2. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRefGoogle Scholar
  3. Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for group analysis in FMRI. Neuroimage 20:1052PubMedCrossRefGoogle Scholar
  4. Binkofski F, Seitz RJ (2004) Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 63:1223–1229PubMedGoogle Scholar
  5. Birbaumer N, Cohen LG (2007) Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 579:621–636PubMedCrossRefGoogle Scholar
  6. Cramer SC, Lastra L, Lacourse MG, Cohen MJ (2005) Brain motor system function after chronic, complete spinal cord injury. Brain 128:2941–2950PubMedCrossRefGoogle Scholar
  7. Cramer SC, Orr EL, Cohen MJ, Lacourse MG (2007) Effects of motor imagery training after chronic, complete spinal cord injury. Exp Brain Res 177:233–242PubMedCrossRefGoogle Scholar
  8. de Vries S, Mulder T (2007) Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med 39:5–13PubMedCrossRefGoogle Scholar
  9. Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316PubMedCrossRefGoogle Scholar
  10. Floyer-Lea A, Matthews PM (2005) Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol 94:512–518PubMedCrossRefGoogle Scholar
  11. Friehs GM, Zerris VA, Ojakangas CL, Fellows MR, Donoghue JP (2004) Brain-machine and brain-computer interfaces. Stroke 35:2702–2705PubMedCrossRefGoogle Scholar
  12. Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104PubMedCrossRefGoogle Scholar
  13. Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002PubMedCrossRefGoogle Scholar
  14. Hotz-Boendermaker S, Funk M, Summers P, Brugger P, Hepp-Reymond M-C, Curt A, Kollias SS (2008) Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. Neuroimage 39:383–394PubMedCrossRefGoogle Scholar
  15. Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J (2003) Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage 20:1171–1180PubMedCrossRefGoogle Scholar
  16. Johnson-Frey SH (2004) Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain Cogn 55:328–331PubMedCrossRefGoogle Scholar
  17. Kalb RG (2003) Getting the spinal cord to think for itself. Arch Neurol 60:805–808PubMedCrossRefGoogle Scholar
  18. Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E (2008) The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage 40:828–837PubMedCrossRefGoogle Scholar
  19. Kirshblum SC, Priebe MM, Ho CH, Scelza WM, Chiodo AE, Wuermser LA (2007) Spinal cord injury medicine. 3. Rehabilitation phase after acute spinal cord injury. Arch Phys Med Rehabil 88:S62–S70PubMedCrossRefGoogle Scholar
  20. Lacourse MG, Orr ELR, Cramer SC, Cohen MJ (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27:505PubMedCrossRefGoogle Scholar
  21. Lauer RT, Peckham PH, Kilgore KL (1999) EEG-based control of a hand grasp neuroprosthesis. Neuroreport 10:1767–1771PubMedCrossRefGoogle Scholar
  22. Leeb R, Friedman D, Müller-Putz G, Scherer R, Slater M, Pfurtscheller G (2007) Self-paced (asynchronous) BCI control of a wheelchair in Virtual Environments: a case study with a tetraplegic. Comput Intell Neurosci:1–8Google Scholar
  23. Muller-Putz GR, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G (2007) Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res 1137:84–91PubMedCrossRefGoogle Scholar
  24. Neuper C, Muller-Putz GR, Scherer R, Pfurtscheller G (2006) Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog Brain Res 159:393–409PubMedCrossRefGoogle Scholar
  25. Pfurtscheller G, Guger C, Muller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 13:211–214CrossRefGoogle Scholar
  26. Pfurtscheller G, Muller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) ‘Thought’—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33–36PubMedCrossRefGoogle Scholar
  27. Pfurtscheller G, Müller-Putz G, Pfurtscheller J, Rupp R (2005) EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP J Appl Signal Processing 19:3152–3155CrossRefGoogle Scholar
  28. Pfurtscheller G, Leeb R, Keinrath C, Friedman D, Neuper C, Guger C, Slater M (2006) Walking from thought. Brain Res 1071:145–152PubMedCrossRefGoogle Scholar
  29. Sabbah P, de SS, Leveque C, Gay S, Pfefer F, Nioche C, Sarrazin JL, Barouti H, Tadie M, Cordoliani YS (2002) Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J Neurotrauma 19:53–60PubMedCrossRefGoogle Scholar
  30. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic, San DiegoGoogle Scholar
  31. Sharma N, Pomeroy VM, Baron J-C (2006) Motor imagery: a backdoor to the motor system after stroke? Stroke 37:1941–1952PubMedCrossRefGoogle Scholar
  32. Suga R, Tobimatsu S, Kira J, Kato M (1999) Motor and somatosensory evoked potential findings in HTLV-I associated myelopathy. J Neurol Sci 167:102–106PubMedCrossRefGoogle Scholar
  33. Tobimatsu S, Sun SJ, Fukui R, Kato M (1998) Effects of sex, height and age on motor evoked potentials with magnetic stimulation. J Neurol 245:256–261PubMedCrossRefGoogle Scholar
  34. Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4:105PubMedCrossRefGoogle Scholar
  35. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791PubMedCrossRefGoogle Scholar
  36. Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M, Smith SM (2004) Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21:1732PubMedCrossRefGoogle Scholar
  37. Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christian Enzinger
    • 1
    • 2
    Email author
  • Stefan Ropele
    • 1
  • Franz Fazekas
    • 1
  • Marisa Loitfelder
    • 1
    • 3
  • Faton Gorani
    • 4
  • Thomas Seifert
    • 1
  • Gudrun Reiter
    • 1
  • Christa Neuper
    • 3
    • 5
  • Gert Pfurtscheller
    • 5
  • Gernot Müller-Putz
    • 5
  1. 1.Department of NeurologyMedical UniversityGrazAustria
  2. 2.Division of Neuroradiology, Department of RadiologyMedical UniversityGrazAustria
  3. 3.Institute of PsychologyKarl-Franzens University GrazGrazAustria
  4. 4.Department of NeurosurgeryUniversity of ErlangenErlangenGermany
  5. 5.Laboratory of Brain–Computer Interfaces, Institute of Knowledge DiscoveryGraz University of TechnologyGrazAustria

Personalised recommendations