Skip to main content

A computational neuroanatomy for motor control

Abstract

The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agostino R, Sanes JN, Hallett M (1996) Motor skill learning in Parkinson’s disease. J Neurol Sci 139:218–226

    PubMed  Article  CAS  Google Scholar 

  2. Bahill AT, Clark MR, Stark L (1975) Dynamic overshoot in saccadic eye movements is caused by neurological control signed reversals. Exp Neurol 48:107–122

    PubMed  Article  CAS  Google Scholar 

  3. Barbarulo AM, Grossi D, Merola S, Conson M, Trojano L (2007) On the genesis of unilateral micrographia of the progressive type. Neuropsychologia 45:1685–1696

    PubMed  Article  Google Scholar 

  4. Bastian AJ, Zackowski KM, Thach WT (2000) Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol 83:3019–3030

    PubMed  CAS  Google Scholar 

  5. Beer RF, Dewald JP, Rymer WZ (2000) Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res 131:305–319

    PubMed  Article  CAS  Google Scholar 

  6. Bernier PM, Chua R, Bard C, Franks IM (2006) Updating of an internal model without proprioception: a deafferentation study. Neuroreport 17:1421–1425

    PubMed  Article  Google Scholar 

  7. Caramazza A (1986) On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn 5:41–66

    PubMed  Article  CAS  Google Scholar 

  8. Cavaco S, Anderson SW, Allen JS, Castro-Caldas A, Damasio H (2004) The scope of preserved procedural memory in amnesia. Brain 127:1853–1867

    PubMed  Article  Google Scholar 

  9. Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R (2006) Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16:1462–1473

    PubMed  Article  Google Scholar 

  10. Collewijn H, Erkelens CJ, Steinman RM (1988) Binocular co-ordination of human horizontal saccadic eye movements. J Physiol 404:157–182

    PubMed  CAS  Google Scholar 

  11. Corkin S (1968) Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia 6:255–265

    Article  Google Scholar 

  12. Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neurosci 2:563–567

    PubMed  Article  CAS  Google Scholar 

  13. Diedrichsen J (2007) Optimal task-dependent changes of bimanual feedback control and adaptation. Curr Biol 17:1675–1679

    PubMed  Article  CAS  Google Scholar 

  14. Dijkerman HC, McIntosh RD, Anema HA, de Haan EH, Kappelle LJ, Milner AD (2006) Reaching errors in optic ataxia are linked to eye position rather than head or body position. Neuropsychologia 44:2766–2773

    PubMed  Article  CAS  Google Scholar 

  15. Domkin D, Laczko J, Djupsjobacka M, Jaric S, Latash ML (2005) Joint angle variability in 3D bimanual pointing: uncontrolled manifold analysis. Exp Brain Res 163:44–57

    PubMed  Article  Google Scholar 

  16. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Google Scholar 

  17. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    PubMed  CAS  Google Scholar 

  18. Gabrieli JDE, Corkin S, Mickel SF, Growdon JH (1993) Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer’s disease and in global amnesia. Behav Neurosci 107:899–910

    PubMed  Article  CAS  Google Scholar 

  19. Gabrieli JDE, Stebbins GT, Singh J, Willingham DB, Goetz CG (1997) Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington’s disease: evidence for dissociable memory systems in skill learning. Neuropsychology 11:272–281

    PubMed  Article  CAS  Google Scholar 

  20. Girard B, Berthoz A (2005) From brainstem to cortex: computational models of saccade generation circuitry. Prog Neurobiol 77:215–251

    PubMed  CAS  Google Scholar 

  21. Grea H, Pisella L, Rossetti Y, Desmurget M, Tilikete C, Grafton S, Prablanc C, Vighetto A (2002) A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40:2471–2480

    PubMed  Article  Google Scholar 

  22. Guthrie BL, Porter JD, Sparks DL (1983) Corollary discharge provides accurate eye position information to the oculomotor system. Science 221:1193–1195

    PubMed  Article  CAS  Google Scholar 

  23. Harris CM, Wolpert DM (2006) The main sequence of saccades optimizes speed-accuracy trade-off. Biol Cybern 95:21–29

    PubMed  Article  Google Scholar 

  24. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    PubMed  Article  CAS  Google Scholar 

  25. Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72:27–53

    PubMed  Article  Google Scholar 

  26. Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278

    PubMed  Article  Google Scholar 

  27. Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. J Neurosci (in press)

  28. Jax SA, Rosenbaum DA (2007) Hand path priming in manual obstacle avoidance: evidence that the dorsal stream does not only control visually guided actions in real time. J Exp Psychol Hum Percept Perform 33:425–441

    PubMed  Article  Google Scholar 

  29. Jones KE, Hamilton AF, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    PubMed  Article  Google Scholar 

  30. Kakei S, Hoffman DS, Strick PL (2001) Direction of action is represented in the ventral premotor cortex. Nature Neurosci 4:1020–1025

    PubMed  Article  CAS  Google Scholar 

  31. Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    PubMed  Article  CAS  Google Scholar 

  32. Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34:908–919

    PubMed  CAS  Google Scholar 

  33. Kording K (2007) Decision theory: what “should” the nervous system do? Science 318:606–610

    PubMed  Article  CAS  Google Scholar 

  34. Kording KP, Fukunaga I, Howard IS, Ingram JN, Wolpert DM (2004) A neuroeconomics approach to inferring utility functions in sensorimotor control. PLoS Biol 2:e330

    PubMed  Article  CAS  Google Scholar 

  35. Kording KP, Tenenbaum JB, Shadmehr R (2007) The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat Neurosci 10:779–786

    PubMed  Article  CAS  Google Scholar 

  36. Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247

    PubMed  Article  CAS  Google Scholar 

  37. Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neurosci 2:1026–1031

    PubMed  Article  CAS  Google Scholar 

  38. Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  39. Kunesch E, Binkofski F, Steinmetz H, Freund HJ (1995) The pattern of motor deficits in relation to the site of stroke lesions. Eur Neurol 35:20–26

    PubMed  CAS  Google Scholar 

  40. Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27:9354–9368

    PubMed  Article  CAS  Google Scholar 

  41. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Henry Holt

  42. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119:1183–1198

    PubMed  Article  Google Scholar 

  43. Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    PubMed  Article  Google Scholar 

  44. Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27:7105–7116

    PubMed  Article  CAS  Google Scholar 

  45. Miall RC, Christensen LOD, Owen C, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    PubMed  Article  CAS  Google Scholar 

  46. Milner B (1962) Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales. In: Physiologie de l’Hippocampe, Colloques Internationaux No. 107. CNRS, Paris, pp 257–272

  47. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    PubMed  Article  CAS  Google Scholar 

  48. Mishkin M, Malamut B, Bachevalier J (1984) Memories and habits: two neural systems. In: Lynch G, McGaugh J (eds) Neurobiology of learning and memory. Guilford Press, pp 65–77

  49. Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    PubMed  Article  CAS  Google Scholar 

  50. Nowak DA, Timmann D, Hermsdorfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703

    PubMed  Article  Google Scholar 

  51. Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26:222–227

    PubMed  Article  CAS  Google Scholar 

  52. Optican LM (2005) Sensorimotor transformation for visually guided saccades. Ann NY Acad Sci 1039:132–148

    PubMed  Article  Google Scholar 

  53. Optican LM, Quaia C (2002) Distributed model of collicular and cerebellar function during saccades. Ann NY Acad Sci 956:164–177

    PubMed  Article  Google Scholar 

  54. Packard MG, McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci 106:439–446

    PubMed  Article  CAS  Google Scholar 

  55. Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111(Pt 3):643–674

    PubMed  Article  Google Scholar 

  56. Pinker S, Ullman MT (2002) The past and future of the past tense. Trends Cogn Sci 6:456–463

    PubMed  Article  Google Scholar 

  57. Porter R, Lemon R (1995) Corticospinal function and voluntary movement. Clarendon Press, Oxford

    Google Scholar 

  58. Quaia C, Pare M, Wurtz RH, Optican LM (2000) Extent of compensation for variations in monkey saccadic eye movements. Exp Brain Res 132:39–51

    PubMed  Article  CAS  Google Scholar 

  59. Raghavan P, Krakauer JW, Gordon AM (2006) Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain 129:1415–1425

    PubMed  Article  Google Scholar 

  60. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    PubMed  Article  CAS  Google Scholar 

  61. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    PubMed  Article  CAS  Google Scholar 

  62. Robinson DA (1975) Oculomotor control signals. In: BachyRita P, Lennerstrand G (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 337–374

    Google Scholar 

  63. Rushworth MF, Nixon PD, Passingham RE (1997) Parietal cortex and movement. I. Movement selection and reaching. Exp Brain Res 117:292–310

    PubMed  Article  CAS  Google Scholar 

  64. Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    PubMed  CAS  Google Scholar 

  65. Sanes JN, Dimitrov B, Hallett M (1990) Motor learning in patients with cerebellar dysfunction. Brain 113:103–120

    PubMed  Article  Google Scholar 

  66. Scheidt RA, Ghez C (2007) Separate adaptive mechanisms for controlling trajectory and final position in reaching. J Neurophysiol 98:3600–3613

    PubMed  Article  Google Scholar 

  67. Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    PubMed  Article  CAS  Google Scholar 

  68. Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    PubMed  Article  Google Scholar 

  69. Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89:212–228

    PubMed  Article  Google Scholar 

  70. Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  71. Shadmehr R, Brandt J, Corkin S (1998) Time dependent motor memory processes in H.M. and other amnesic subjects. J Neurophysiol 80:1590–1597

    PubMed  CAS  Google Scholar 

  72. Shimazu H, Maier MA, Cerri G, Kirkwood PA, Lemon RN (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24:1200–1211

    PubMed  Article  CAS  Google Scholar 

  73. Sirigu A, Duhamel J-R, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568

    PubMed  Article  CAS  Google Scholar 

  74. Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    PubMed  Article  Google Scholar 

  75. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    PubMed  Article  CAS  Google Scholar 

  76. Takeichi N, Kaneko CR, Fuchs AF (2005) Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol 94:1938–1951

    PubMed  Article  CAS  Google Scholar 

  77. Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp Brain Res 142:284–291

    PubMed  Article  Google Scholar 

  78. Thiele A, Henning P, Kubischik M, Hoffmann KP (2002) Neural mechanisms of saccadic suppression. Science 295:2460–2462

    PubMed  Article  CAS  Google Scholar 

  79. Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    PubMed  Article  CAS  Google Scholar 

  80. Thoroughman KA, Wang W, Tomov DN (2007) The influence of viscous loads on motor planning. J Neurophysiol 98:870–877

    PubMed  Article  Google Scholar 

  81. Todorov E (2005) Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Comput 17:1084–1108

    PubMed  Article  Google Scholar 

  82. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    PubMed  Article  CAS  Google Scholar 

  83. Tranel D, Damasio AR, Damasio H, Brandt JP (1994) Sensorimotor skill learning in amnesia: additional evidence for the neural basis of nondeclarative memory. Learn Mem 1:165–179

    PubMed  CAS  Google Scholar 

  84. Trommershauser J, Gepshtein S, Maloney LT, Landy MS, Banks MS (2005) Optimal compensation for changes in task-relevant movement variability. J Neurosci 25:7169–7178

    PubMed  Article  CAS  Google Scholar 

  85. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    PubMed  Article  Google Scholar 

  86. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    PubMed  Article  CAS  Google Scholar 

  87. Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern 61:89–101

    PubMed  Article  CAS  Google Scholar 

  88. Van Gemmert AW, Teulings HL, Stelmach GE (2001) Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn 47:504–512

    PubMed  Article  Google Scholar 

  89. Vaziri S, Diedrichsen J, Shadmehr R (2006) Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J Neurosci 26:4188–4197

    PubMed  Article  CAS  Google Scholar 

  90. Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43:279–291

    PubMed  CAS  Google Scholar 

  91. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    PubMed  Article  CAS  Google Scholar 

  92. Wolpert DM, Goodbody SJ, Husain M (1998a) Maintaining internal representations: the role of the human superior parietal lobe. Nature Neurosci 1:529–533

    PubMed  Article  CAS  Google Scholar 

  93. Wolpert DM, Miall RC, Kawato M (1998b) Internal models in the cerebellum. Trends Cog Sci 2:338–347

    Article  Google Scholar 

  94. Yamashita H (1993) Perceptual-motor learning in amnesic patients with medial temporal lobe lesions. Percept Mot Skills 77:1311–1314

    PubMed  CAS  Google Scholar 

  95. Yang JF, Scholz JP (2005) Learning a throwing task is associated with differential changes in the use of motor abundance. Exp Brain Res 163:137–158

    PubMed  Article  Google Scholar 

  96. Shallice T (1988) From neurobiology to mental structure. Cambridge University Press.

Download references

Acknowledgments

The work was supported by National Institutes of Health (NIH) grants K02-048099 and R01-052804 to JWK, R01-037422 to RS, and a grant from the Human Frontiers Science Foundation to RS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza Shadmehr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shadmehr, R., Krakauer, J.W. A computational neuroanatomy for motor control. Exp Brain Res 185, 359–381 (2008). https://doi.org/10.1007/s00221-008-1280-5

Download citation

Keywords

  • Optimal control
  • Computational models
  • Reaching
  • Cerebellum
  • Basal ganglia
  • Motor cortex
  • Parietal cortex