Skip to main content

Advertisement

Log in

Somatostatin inhibits tooth-pulp-evoked rat cervical dorsal horn neuronal activity

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The aim of the present study is to investigate the effect of somatostatin (SST). It is well known that SST is a neuromodulator in the central nervous system and is involved in the regulation of metabolic and neuroendocrine functions. Recent experimental and clinical findings indicate a role for SST in the central processing of nociception. Therefore, we tested the hypothesis whether a local release of SST modulates the tooth-pulp (TP)-evoked upper cervical spinal dorsal horn (C1) neuronal activity, using microiontophoretic application and immunohistochemical techniques. Extracelluar single unit recordings were made from 35 C1 neurons responding to TP electrical stimulation (TPS) in pentobarbital anesthetized rats. Microiontophoretic application of SST (30-70 nA) current dependently inhibited TP-evoked C1 neuronal discharges (60%, 21/35). The inhibition of this discharge by 50 nA SST application was abolished by co-application of a SST2 receptor antagonist (Cyanamid-154806, 50 nA). Immunoreactivity for SST2A receptor was found in the superficial layer (Ι–ΙΙΙ) of C1 dorsal horn. These results suggest that a local release of SST modulates the TP-evoked C1 neuronal activity and this may contribute to a useful therapeutic target for the alleviation of tooth pain and trigeminal hyperalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartsch T, Levy MJ, Knight YE, Goadsby PJ (2005) Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus. Pain 117:30–39

    Article  PubMed  CAS  Google Scholar 

  • Bass RT, Buckwalter BL, Patel BP, Pausch MH, Price LA, Strnad J, Hadcock JR (1996) Identification and characterization of novel somatostatin antagonists. Mol Pharmacol 50(4):709–715

    PubMed  CAS  Google Scholar 

  • Bassant MH, Simon A, Poindessous-Jazat F, Csaba Z, Epelbaum J, Dournaud P (2005) Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. J Neurosci 25:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Bereiter DA (1997) Morphine and somatostatin analogue reduce c-Fos expression in trigeminal subnucleus caudalis produced by corneal stimulation in the rat. Neuroscience 77:863–874

    Article  PubMed  CAS  Google Scholar 

  • Carlton SM, Du J, Davidson E, Zhou S, Coggeshall RE (2001) Somatostatin receptors on the peripheral primary afferent terminals:inhibition of sensitized nociceptors. Pain 90:233–244

    Article  PubMed  CAS  Google Scholar 

  • Dal Monte M, Petrucci C, Cozzi A, Allen JP, Bagnoli P (2003) Somatostatin inhibits potassium-evoked glutamate release by activation of the sst2 somtatostatin receptor in the mouse retina. Naunyn Schmiedebergs Arch Pharmacol 367:188–192

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum J, Dournaud P, Fodor M, Viollet C (1994) The neurobiology of somatostatin. Crit Rev Neurobiol 8:25–44

    PubMed  CAS  Google Scholar 

  • Eschalier A, Aumaitre O, Ardid D, Fialip J, Duchene-Marullaz P (1991) Long-lasting antinociceptive effect of RC-160, a somatostatin analog, in mice and rats. Eur J Pharmacol 199:119–121

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O’Carroll AM, Patel YC, Schonbrunn A, Taylor JE, Reisine T (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Schulz S, Hollt V, Sugimoto T (2003) The somatostatin sst2A receptor in the rat trigeminal ganglion. Neuroscience 120:807–813

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Furue H, Katafuchi T, Yoshimura M (2003) Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro. Neurosci Res 47:97–107

    Article  PubMed  CAS  Google Scholar 

  • Knight Y, Bartsch T, Kaube H, Goadsby PJ (2002) P/Q-type calcium channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 22:RC213

    PubMed  Google Scholar 

  • Matharu MS, Levy MJ, Meeran K, Goadsby PJ (2004) Subcutaneous octreotide in cluster headache: randomized placebo-controlled double-blind crossover study. Ann Neurol 56:488–494

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Takeda M, Tanimoto T (1999) Effects of electrical stimulation of the tooth pulp and phrenic nerve fibers on C1 spinal neurons in the rat. Exp Brain Res 126:351–358

    Article  PubMed  CAS  Google Scholar 

  • Matucci-Cerinic M, Borrelli F, Generini S, Cantelmo A, Marcucci I, Martelli F, Romagnoli P, Bacci S, Conz A, Marinelli P, Marabini S (1995) Somatostatin-induced modulation of inflammation in experimental arthritis. Arthritis Rheum 38(11):1687–1693

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Takeda M, Tanimoto T, Matsumoto S (2004) Convergence of nociceptive information from temporomandibular joint and tooth pulp afferents on C1 spinal neurons in the rat. Life Sci 75(12):1465–1478

    Article  PubMed  CAS  Google Scholar 

  • Oshima K, Takeda M, Tanimoto T, Katsuumi I, Matsumoto S (2005) Tooth-pulp-evoked rostral spinal trigeminal nucleus neuron activity is inhibited by conditioning sciatic nerve stimulation in the rat: possible role of 5-HT3 receptor mediated GABAergic inhibition. Brain Res Bull 65(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Oshima K, Takeda M, Tanimoto T, Katsuumi I, Matsumoto S (2006) Tooth-pulp-evoked rostral spinal trigeminal neuronal excitation is attenuated by the activation of 5-HT3 receptors via GABAergic interneurons in the rat. Brain Res 1109(1):70–73

    Article  PubMed  CAS  Google Scholar 

  • Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  PubMed  CAS  Google Scholar 

  • Pawlak M, Schmidt RF (2004) Octreotide, a somatostatin analogue, attenuates movement evoked discharges of fine afferent units from inflamed knee joints of rats. Neurosci Lett 361(1–3):180–183

    Article  PubMed  CAS  Google Scholar 

  • Pintér E, Helyes Z, Szolcsányi J (2006) Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 112:440–456

    Article  PubMed  Google Scholar 

  • Randic M, Miletic V (1978) Depressant actions of methionine-enkephalin and somatostatin in cat dorsal horn neurones activated by noxious stimuli. Brain Res 152:196–202

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Waser B, Markusse HM, Krenning EP, VanHagen M, Laissue JA (1994) Vascular somatostatin receptors in synovium from patients with rheumatoid arthritis. Eur J Pharmacol 271(2–3):371–378

    PubMed  CAS  Google Scholar 

  • Selmer I, Schinder M, Allen JP, Humphrey PP, Emson PC (2000) Advances in understanding neuronal somatostatin receptors. Regul Pept 90:1–18

    Article  PubMed  CAS  Google Scholar 

  • Takeba Y, Suzuki N, Takeno M, Asai T, Tsuboi S, Hoshino T, Sakane T (1997) Modulation of synovial cell function by somatostatin in patients with rheumatoid arthritis. Arthritis Rheum 40(12):2128–2138

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tanimoto T, Ito M, Nasu M, Matsumoto S (2005) Role of capsaicin-sensitive afferent inputs from the masseter muscle in the C1 spinal neurons responding to tooth-pulp stimulation in rats. Exp Brain Res 160:107–117

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Kadoi J, Takahashi M, Nasu M, Matsumoto S (2007) Somatostatin inhibit the excitability of rat small-diameter trigeminal ganglion neurons that innervate nasal mucosa and project to the upper cervical dorsal horn via activation of somatostatin 2a receptor. Neuroscience 148(3):744–756

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto T, Takeda M, Matsumoto S (2002) Suppressive effect of vagal afferents on cervical dorsal horn neurons responding to tooth pulp electrical stimulation in the rat. Exp Brain Res 145(4):468–479

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Takeda, M. & Matsumoto, S. Somatostatin inhibits tooth-pulp-evoked rat cervical dorsal horn neuronal activity. Exp Brain Res 184, 617–622 (2008). https://doi.org/10.1007/s00221-007-1261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1261-0

Keywords

Navigation