Experimental Brain Research

, Volume 186, Issue 4, pp 539–550 | Cite as

Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study

  • Tim WagnerEmail author
  • Uri Eden
  • Felipe Fregni
  • Antoni Valero-Cabre
  • Ciro Ramos-Estebanez
  • Valerie Pronio-Stelluto
  • Alan Grodzinsky
  • Markus Zahn
  • Alvaro Pascual-Leone
Research Article


This paper is aimed at exploring the effect of cortical brain atrophy on the currents induced by transcranial magnetic stimulation (TMS). We compared the currents induced by various TMS conditions on several different MRI derived finite element head models of brain atrophy, incorporating both decreasing cortical volume and widened sulci. The current densities induced in the cortex were dependent upon the degree and type of cortical atrophy and were altered in magnitude, location, and orientation when compared to healthy head models. Predictive models of the degree of current density attenuation as a function of the scalp-to-cortex distance were analyzed, concluding that those which ignore the electromagnetic field–tissue interactions lead to inaccurate conclusions. Ultimately, the precise site and population of neural elements stimulated by TMS in an atrophic brain cannot be predicted based on healthy head models which ignore the effects of the altered cortex on the stimulating currents. Clinical applications of TMS should be carefully considered in light of these findings.


Cortical atrophy Finite element model Transcranial magnetic stimulation Brain stimulation Neuromodulation Brain plasticity 



We acknowledge the contribution of the Maxwell software from the Ansoft Corporation, Pittsburgh, PA that was used in this study. This work was supported in part by Center for Integration of Medicine and Innovative Technology (CIMIT) under Grant numbers 45335 and 20736, and by grants from the National Institutes of Health (K24 RR018875, RO1 EY12091, R01 EB005047, RO1 DC05672, RO1 NS47754, RO1 NS20068). F.F. received support under a grant from the Harvard Medical School Scholars in Clinical Science Program (NIH K30 HL04095-03). AV-C was supported in part by the National Institutes of Health (NS32137 and NS33975 to BP/MM-AVC, and grants from ‘La Caixa’ (Spain) and the Spanish Ministry of Education Culture and Sports, EX2002-041).


  1. Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, DiMauro MA, Lee RR, Sutherling WW (2002) Conductivities of three-layer live human skull. Brain Topogr 14:151–167PubMedCrossRefGoogle Scholar
  2. Alagona G, Ferri R, Pennisi G, Carnemolla A, Maci T, Domina E, Maertens de Noordhout A, Bella R (2004) Motor cortex excitability in Alzheimer’s disease and in subcortical ischemic vascular dementia. Neurosci Lett 362:95–98PubMedCrossRefGoogle Scholar
  3. Amassian V, Eberle L, Maccabee P, Cracco R (1992) Modeling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shape volume conductor: the signicance of fiber bending in excitation. Electroenceph clin Neurophysiol 85:291–301PubMedCrossRefGoogle Scholar
  4. Ansoft (2002) Maxwell 3D. In: Ansoft, PittsburghGoogle Scholar
  5. Barker AT, Freeston IL, Jalinous R, Merton PA, Morton HB (1985) Magnetic stimulation of the human brain. J Physiol (Lond) 369:3P (abstract)Google Scholar
  6. Bhatia M, Johri S, Behari M (2003) Increased cortical excitability with longer duration of Parkinson’s disease as evaluated by transcranial magnetic stimulation. Neurol India 51:13–15PubMedGoogle Scholar
  7. Bohning D (2000) Introduction and overview of TMS physics. In: George MS, Belmaker B (eds) Transcranial magnetic stimulation in neuropsychiatry. American Psychiatric Press, Washington DCGoogle Scholar
  8. Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Topper R (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110:699–704PubMedCrossRefGoogle Scholar
  9. Chiappa KH (1994) Transcranial motor evoked potentials. Electromyogr Clin Neurophysiol 34:15–21PubMedGoogle Scholar
  10. Crille GW, Hosmer HR, Rowland AF (1922) The electrical conductivity of animal tissues under normal and pathological conditions. Am J Physiol 60:59–106Google Scholar
  11. Daniele O, Brighina F, Piazza A, Giglia G, Scalia S, Fierro B (2003) Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia—a preliminary study. J Neurol 250:761–762PubMedCrossRefGoogle Scholar
  12. de Carvalho M, de Mendonca A, Miranda PC, Garcia C, Luis ML (1997) Magnetic stimulation in Alzheimer’s disease. J Neurol 244:304–307PubMedCrossRefGoogle Scholar
  13. de Groot M, Hermann W, Steffen J, Wagner A, Grahmann F (2001) [Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson patients]. Nervenarzt 72:932–938PubMedCrossRefGoogle Scholar
  14. De Mercato G, Garcia Sanchez FJ (1992) Correlation between low-frequency electric conductivity and permittivity in the diaphysis of bovine femoral bone. IEEE Trans Biomed Eng 39(5):523–526PubMedCrossRefGoogle Scholar
  15. Deeley EM (1990) Surface impedance near edges and corners in three-dimensional media. IEEE Trans Magn 26:712–714CrossRefGoogle Scholar
  16. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559PubMedCrossRefGoogle Scholar
  17. Dissado LA (1990) A fractal interpertation of the dielectric response of animal tissues. Phys Med Biol 35:1487–1503PubMedCrossRefGoogle Scholar
  18. Foster KR, Schwan HP (1996) Dielectric properties of tissues. In: Polk C, Postow E (eds) Biological effects of electromagnetic fields. CRC Press, New York, pp 25–102Google Scholar
  19. Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:1171–1174PubMedCrossRefGoogle Scholar
  20. Fregni F, Thome-Souza S, Bermpohl F, Marcolin MA, Herzog A, Pascual-Leone A, Valente KD (2005) Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with Cortical malformations: an EEG and clinical study. Stereotact Funct Neurosurg 83:57–62PubMedCrossRefGoogle Scholar
  21. Freygang WH, Landau WM (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Comp Physiol 45:377–392CrossRefGoogle Scholar
  22. Gabriel C, Gabriel S (1996) Compilation of the dielectric properties of body tissues at RF and microwave frequencies. In: Air Force Material Command, Brooks Air Force Base, San AntonioGoogle Scholar
  23. Geddes LA (1987) Optimal stimulus duration for extracranial cortical stimulation. Neurosurgery 20:94–99PubMedCrossRefGoogle Scholar
  24. George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB, Arana GW, Risch SC, Ballenger JC (2000) A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry 48:962–970PubMedCrossRefGoogle Scholar
  25. Hart FX, Toll RB, Berner NJ, Bennett NH (1996) The low frequency dielectric properties of octopus arm muscle measured in vivo. Phys Med Biol 41:2043–2052PubMedCrossRefGoogle Scholar
  26. Hasted JB (1973) Aqueous dielectrics. Halsted Press, New YorkGoogle Scholar
  27. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, Krystal JH (2003) Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry 60:49–56PubMedCrossRefGoogle Scholar
  28. Holtzheimer PE, Avery D, Schlaepfer TE (2004) Antidepressant effects of repetitive transcranial magnetic stimulation. Br J Psychiatry 184:541–542PubMedCrossRefGoogle Scholar
  29. Huang YZ, Edwards MJ, Bhatia KP, Rothwell JC (2004) One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Mov Disord 19:54–59PubMedCrossRefGoogle Scholar
  30. Kammer T, Puls K, Strasburger H, Hill NJ, Wichmann FA (2004) Transcranial magnetic stimulation in the visual system I. The psychophysics of visual suppression. Exp Brain Res 160(1):118–128CrossRefGoogle Scholar
  31. Khedr EM, Farweez HM, Islam H (2003) Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol 10:567–572PubMedCrossRefGoogle Scholar
  32. Knecht S, Sommer J, Deppe M, Steinstrater O (2005) Scalp position and efficacy of transcranial magnetic stimulation. Clin Neurophysiol 116:1988–1993PubMedCrossRefGoogle Scholar
  33. Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48:1406–1416PubMedGoogle Scholar
  34. Kuhn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A (2004) Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115:1786–1795PubMedCrossRefGoogle Scholar
  35. Lee SH, Kim W, Chung YC, Jung KH, Bahk WM, Jun TY, Kim KS, George MS, Chae JH (2005) A double blind study showing that two weeks of daily repetitive TMS over the left or right temporoparietal cortex reduces symptoms in patients with schizophrenia who are having treatment-refractory auditory hallucinations. Neurosci Lett 376:177–181PubMedCrossRefGoogle Scholar
  36. Lefaucheur JP (2005) Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116:244–253PubMedCrossRefGoogle Scholar
  37. Lefaucheur JP, Drouot X, Von Raison F, Menard-Lefaucheur I, Cesaro P, Nguyen JP (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 115:2530–2541PubMedCrossRefGoogle Scholar
  38. Lepeschkin E (1951) Modern electrophysiology. Williams and Wilkins, BaltimoreGoogle Scholar
  39. Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441PubMedCrossRefGoogle Scholar
  40. Liu R, Ueno S (2000) Calculating the activating function of nerve excitation in inhomogeneous volume conductor during magnetic stimulation using the finite element method. IEEE Trans Magn 36:1796–1799CrossRefGoogle Scholar
  41. Maccabee P, Amassian V, Eberle L, Cracco R (1993) Magnetic coil stimulation of straight and bent amphibian and mammallian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219PubMedGoogle Scholar
  42. Mally J, Stone TW (1999) Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Sci 162:179–184PubMedCrossRefGoogle Scholar
  43. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, Wagner T, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64:1802–1804PubMedCrossRefGoogle Scholar
  44. Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Perez V, Kulisevsky J (2003) Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry 182:480–491PubMedCrossRefGoogle Scholar
  45. Menkes DL, Gruenthal M (2000) Slow-frequency repetitive transcranial magnetic stimulation in a patient with focal cortical dysplasia. Epilepsia 41:240–242PubMedCrossRefGoogle Scholar
  46. Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50:1074–1085PubMedCrossRefGoogle Scholar
  47. Modugno N, Curra A, Giovannelli M, Priori A, Squitieri F, Ruggieri S, Manfredi M, Berardelli A (2001) The prolonged cortical silent period in patients with Huntington’s disease. Clin Neurophysiol 112:1470–1474PubMedCrossRefGoogle Scholar
  48. Nagarajan S, Durand DM (1995) Analysis of magnetic stimulation of a concentric axon in a nerve bundle. IEEE Trans Biomed Eng 42:926–933PubMedCrossRefGoogle Scholar
  49. Nagarajan S, Durand DM, Warman EN (1993) Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Trans Biomed Eng 40:1175–1188PubMedCrossRefGoogle Scholar
  50. Nahas Z, Li X, Kozel FA, Mirzki D, Memon M, Miller K, Yamanaka K, Anderson B, Chae JH, Bohning DE, Mintzer J, George MS (2004) Safety and benefits of distance-adjusted prefrontal transcranial magnetic stimulation in depressed patients 55–75 years of age: a pilot study. Depress Anxiety 19:249–256PubMedCrossRefGoogle Scholar
  51. Oswald K (1937) Messung der leitfahigkeit und Dielektrizitatkonstante biologischer Gewebe un Flussigkeiten bei kurzen Wellen. Hochfreq Tech Elektroakust 49:40–49Google Scholar
  52. Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237PubMedCrossRefGoogle Scholar
  53. Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, New YorkGoogle Scholar
  54. Pethig R, Kell DB (1987) The passive electrical propeties of biological systems: their signicance in physiology, biophysics, and biotechnology. Phys Med Biol 32:933–970PubMedCrossRefGoogle Scholar
  55. Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, Bernardi G, Stanzione P, Stefani A (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115:2410–2418PubMedGoogle Scholar
  56. Radvan-Ziemnowicz JC, McWilliams JC, Kucharski WE (1964) Conductivity versus frequency in human and feline cerebrospinal fluid. In: Werner Ma (ed) Proceedings of 17th annual conference in medicine and Biology, Washington 12, DCGoogle Scholar
  57. Ranck JB Jr (1963) Analysis of specific impedance of rabbit cerebral cortex. Exp Neurol 7:153–174PubMedCrossRefGoogle Scholar
  58. Ridding MC, Inzelberg R, Rothwell JC (1995) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188PubMedCrossRefGoogle Scholar
  59. Rumi DO, Gattaz WF, Rigonatti SP, Rosa MA, Fregni F, Rosa MO, Mansur C, Myczkowski ML, Moreno RA, Marcolin MA (2005) Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study. Biol Psychiatry 57:162–166PubMedCrossRefGoogle Scholar
  60. Sakuishi K, Hanajima R, Kanazawa I, Ugawa Y (2005) Periodic motor cortical excitability changes associated with PSDs of EEG in Creutzfeldt–Jakob disease (CJD). Clin Neurophysiol 116:1222–1226PubMedCrossRefGoogle Scholar
  61. Silbert LC, Quinn JF, Moore MM, Corbridge E, Ball MJ, Murdoch G, Sexton G, Kaye JA (2003) Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 61:487–492PubMedGoogle Scholar
  62. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315PubMedCrossRefGoogle Scholar
  63. Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB (2005) A simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94(6):4520–4527PubMedCrossRefGoogle Scholar
  64. Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209PubMedCrossRefGoogle Scholar
  65. Valero-Cabre A, Rushmore R, Lomber SG, Payne BR, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Exp Brain Res 163:1–12PubMedCrossRefGoogle Scholar
  66. Valero-Cabre A, Rushmore RJ, Payne BR (2006) Low frequency transcranial magnetic stimulation on the posterior parietal cortex induces visuotopically specific neglect-like syndrome. Exp Brain Res 172:14–21PubMedCrossRefGoogle Scholar
  67. Valero-Cabre A, Payne BR, Pascual-Leone A (2007) Opposite impact on (14)C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176:603–615PubMedCrossRefGoogle Scholar
  68. Wagner T (2001) Field distributions within the human cortex induced by transcranial magnetic stimulation. In: EECS. Massachusetts Institute of Technology, Cambridge, p 186Google Scholar
  69. Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A (2004) Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51:1586–1598PubMedCrossRefGoogle Scholar
  70. Wagner T, Fregni F, Eden U, Ramos-Estebanez C, Grodzinsky A, Zahn M, Pascual AP (2005) Transcranial magnetic stimulation and stroke: a computer based human model study. Neuroimage 30(3):857–870CrossRefGoogle Scholar
  71. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565PubMedCrossRefGoogle Scholar
  72. Wassermann EM, Wang B, Zeffiro TA, Sadato N, Pascual-Leone A, Toro C, Hallett M (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3:1–9PubMedCrossRefGoogle Scholar
  73. Yunokuchi K, Kato R, Yoshida H, Tamari Y, Saito M (1998) Study on the distributions of induced electric field in an inhomogeneous medium exposed a pulsed magnetic field. In: Annual international conference of the IEEE of the engineering in medicine and biology society, vol 6, pp 3294–3297Google Scholar
  74. Zahn M (2003) Electromagnetic field theory: a problem solving approach. Krieger Publishing Company, MelbourneGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tim Wagner
    • 1
    • 2
    • 3
    Email author
  • Uri Eden
    • 1
    • 4
  • Felipe Fregni
    • 2
  • Antoni Valero-Cabre
    • 2
    • 5
    • 6
  • Ciro Ramos-Estebanez
    • 2
  • Valerie Pronio-Stelluto
    • 1
  • Alan Grodzinsky
    • 3
    • 7
  • Markus Zahn
    • 3
  • Alvaro Pascual-Leone
    • 2
  1. 1.Division of Health Sciences and TechnologyHarvard Medical School/Massachusetts Institute of TechnologyBostonUSA
  2. 2.Harvard Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical CenterBostonUSA
  3. 3.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Mathematics and StatisticsBoston UniversityBostonUSA
  5. 5.Boston University School of MedicineBostonUSA
  6. 6.CNRS UMR 5105, Grenoble, ERT TREAT Vision and Department of NeurologyFondation Ophtalmologique RothschildParisFrance
  7. 7.Center for Biomedical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations