Skip to main content
Log in

Early development of sensitivity to radial motion at different speeds

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We examined the sensitivity of 2- and 3-month-old infants to radial expansion/contraction at various speeds. The stimuli comprised one radial motion pattern (expansion or contraction) and one translational motion pattern (up, down, left or right; counterbalanced across infants) placed side by side. The two patterns in each stimulus had the same speed. Three-month-old infants could discriminate between radiation and translation, even under relatively low speeds (5.31 and 2.66°/s), whereas discrimination between the two patterns by 2-month-old infants was very limited. Thus, the range of speeds at which infants can detect radial expansion/contraction changes extensively between 2 and 3 months of age. This change in radial motion sensitivity may reflect the development of cortical motion mechanisms in the dorsal pathway, which is specialised to detect radial motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aslin RN, Shea SI (1990) Velocity thresholds in human infants—implications for the perception of motion. Dev Psychol 26:589–598

    Article  Google Scholar 

  • Atkinson J (1979) Development of optokinetic nystagmus in the human infant and monkey infant: an analogue to development in kittens. In: Freeman RD (ed) Developmental neurobiology of vision. NATO advanced study institute series. Plenum Press, New York

    Google Scholar 

  • Atkinson J, Braddick OJ (1981) Development of optokinetic nystagmus in infants: an indicator of cortical binocularity? In: Fisher DF, Monty RA, Senders JW (eds) Eye movements: cognition and visual perception. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 53–64

    Google Scholar 

  • Ball WA, Ballot R, Dibble A (1983) Stimulus dimensionality and infants’ perceived movement in depth. J Genet Psychol 143:193–200

    PubMed  CAS  Google Scholar 

  • Ball K, Sekuler R (1980) Human vision favors centrifugal motion. Perception 9:317–325

    Article  PubMed  CAS  Google Scholar 

  • Ball W, Tronick E (1971) Infant responses to impending collision: optical and real. Science 171:818–820

    Article  PubMed  CAS  Google Scholar 

  • Banton T, Bertethal BI (1996) Infants’ sensitivity to uniform motion. Vision Res 36:1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Banton T, Bertenthal BI (1997) Multiple developmental pathways for motion processing. Optom Vision Sci 74:751–760

    Article  CAS  Google Scholar 

  • Banton T, Bertenthal BI, Seaks J (1996) Infants’ sensitivity to statistical distributions of motion direction and speed. Vision Res 39:3417–3430

    Article  Google Scholar 

  • Banton T, Dobkins K, Bertenthal BI (2001) Infant direction discrimination thresholds. Vision Res 41:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Bertenthal BI, Bradbury A (1992) Infants’ detection of shearing motion in random-dot display. Dev Psychol 28:1056–1066

    Article  Google Scholar 

  • Bex PJ, Makous W (1997) Radial motion looks faster. Vision Res 37:3399–3405

    Article  PubMed  CAS  Google Scholar 

  • Bower TGR, Broughton JM, Moore MK (1970) Infant response to approaching objects: an indicator of response to distal variables. Percept Psychophys 9:193–196

    Google Scholar 

  • Braddick O, Atkinson J, Wattam-Bell J (2003) Normal and anomalous development of visual motion processing: motion coherence and ‘dorsal-stream vulnerability.’ Neuropsychologia 41:1769–1784

    Article  PubMed  Google Scholar 

  • Dannemiller JL, Freedland RL (1989) The detection of slow stimulus movement in 2- to 5-month-olds. J Exp Child Psychol 47:337–355

    Article  PubMed  CAS  Google Scholar 

  • DeBruyn B, Orban GA (1990) The importance of velocity gradients in the perception of three-dimensional rigidity. Perception 19:21–27

    Article  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345

    PubMed  CAS  Google Scholar 

  • Dumoulin SO, Baker CL, Hess RF (2001) Centrifugal bias for second-order but not first-order motion. J Opt Soc Am A: Opt Image Sci Vision 18:2179–2189

    Article  CAS  Google Scholar 

  • Edwards M, Badcock DR (1993) Asymmetries in the sensitivity to motion in depth: a centripetal bias. Perception 22:1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Edwards M, Ibbotson MR (2007) Relative sensitivities to large-field optic-flow patterns varying in direction and speed. Perception 36:113–124

    Article  PubMed  Google Scholar 

  • Georgeson MA, Harris MG (1978) Apparent foveofugal drift of counterphase gratings. Perception 7:527–536

    Article  PubMed  CAS  Google Scholar 

  • Giaschi D, Zwicker A, Young SA, Bjornson B (2007) The role of cortical area V5/MT+ in speed-tuned directional anisotropies in global motion perception. Vision Res 47:887–898

    Article  PubMed  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton-Mifflin, Boston

    Google Scholar 

  • Gilmore RO, Baker TJ, Grobman KH (2004) Stability in infants’ discrimination of optic flow. Dev Psychol 40:259–270

    Article  PubMed  Google Scholar 

  • Gilmore RO, Rettke HR (2003) Four-month-olds’ discrimination of optic flow patterns depicting different directions of observer motion. Infancy 4:177–200

    Article  Google Scholar 

  • Graziano MS, Andersen RA, Snowden RJ (1994) Tuning of MST neurons to spiral motions. J Neurosci 14:54–67

    PubMed  CAS  Google Scholar 

  • Hamer RD, Norcia AM (1994) The development of motion sensitivity during the first year of life. Vision Res 34:2387–2402

    Article  PubMed  CAS  Google Scholar 

  • Johansson G (1964) Perception of motion and changing form. Scand J Psychol 5:181–208

    Google Scholar 

  • Kobayashi Y, Yoshino A, Kawamoto M, Takahashi Y, Nomura S (2004) Perception of apparent motion in depth: a high-density electrical mapping study in humans. Neurosci Lett 354:115–118

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Sasaki Y, Andersen GJ, Tootell RB, Matsuura M, Watanabe T (2005) Separate processing of different global-motion structures in visual cortex is revealed by FMRI. Curr Biol 15:2027–2032

    Article  PubMed  CAS  Google Scholar 

  • Lewis CF, McBeath MK (2004) Bias to experience approaching motion in a three-dimensional virtual environment. Perception 33:259–276

    Article  PubMed  Google Scholar 

  • Mason AJ, Braddick OJ, Wattam-Bell J (2003) Motion coherence thresholds in infants—different tasks identify at least two distinct motion systems. Vision Res 43:1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds to specifically to optic flow, revealed by fMRI. Nat Neurosci 3:1322–1328

    Article  PubMed  CAS  Google Scholar 

  • Nanez JE Sr (1988) Perception of impending collision in 3-to 6-week-old human infants. Infant Behav Dev 11:447–463

    Article  Google Scholar 

  • Nanez JE Sr, Yonas A (1994) Effects of luminance and texture motion on infant defensive reactions to optical collision. Infant Behav Dev 17:165–174

    Article  Google Scholar 

  • Perrone JA (1986) Anisotropic responses to motion toward and away from the eye. Percept Psychophys 39:1–8

    PubMed  CAS  Google Scholar 

  • Ptito M, Kupers R, Faubert J, Gjedde A (2001) Cortical representation of inward and outward radial motion in man. Neuroimage 14:1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Raymond JE (1994) Directional anisotropy of motion sensitivity across the visual field. Vision Res 34:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2004a) Asymmetry for the perception of expansion/contraction in infancy. Infant Behav Dev 27:315–322

    Article  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2004b) Sensitivity to linear-speed-gradient of radial expansion flow in infancy. Vision Res 44:3111–3118

    Article  PubMed  Google Scholar 

  • Shirai N, Kanazawa S, Yamaguchi MK (2006) Anisotropic motion coherence sensitivities to expansion/contraction motion in early infancy. Infant Behav Dev 29:204–209

    Article  PubMed  Google Scholar 

  • Shirai N, Yamaguchi MK (2004) Asymmetry in the perception of motion-in-depth. Vision Res 44:1003–1011

    Article  PubMed  Google Scholar 

  • Takeuchi T (1997) Visual search of expansion and contraction. Vision Res 37:2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:626–641

    PubMed  CAS  Google Scholar 

  • Wattam-Bell J (1991) Development of motion-specific cortical responses in infancy. Vision Res 31:287–297

    Article  PubMed  CAS  Google Scholar 

  • Wattam-Bell J (1992) The development of maximum displacement limits for discrimination of motion direction in infancy. Vision Res 32:621–630

    Article  PubMed  CAS  Google Scholar 

  • Wattam-Bell J (1994) Coherence thresholds for discrimination of motion direction in infants. Vision Res 34:877–883

    Article  PubMed  CAS  Google Scholar 

  • Wattam-Bell J (1996) Visual motion processing in one-month-old infants: preferential looking experiments. Vision Res 36:1679–1685

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich G, Marshall JC, Amunts K, Weiss PH, Mohlberg H, Zafiris O, Zilles K, Fink GR (2002) The importance of seeing it coming: a functional magnetic resonance imaging study of motion-in-depth towards the human observer. Neuroscience 112:535–540

    Article  PubMed  CAS  Google Scholar 

  • Yonas A, Pettersen L, Lockman JJ (1979) Young infant’s sensitivity to optical information for collision. Can J Psychol 33:268–276

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our participants and their families for their kind cooperation, and Yumiko Otsuka, Hiroko Konuma, Emi Nakato, Hiromi Okamura and Tomoko Imura for their assistance in data collection. This research was financially supported by the foundation of technology supporting the creation of digital media contents from Japan Science and Technology Agency (to M.K.Y), and grants-in-aid for scientific research from the Japan Society for the Promotion of Science (15500172, 18000090 to M.K.Y. and 19-1464 to N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobu Shirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirai, N., Kanazawa, S. & Yamaguchi, M.K. Early development of sensitivity to radial motion at different speeds. Exp Brain Res 185, 461–467 (2008). https://doi.org/10.1007/s00221-007-1170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1170-2

Keywords

Navigation