Skip to main content
Log in

Possible differences between the time courses of presynaptic and postsynaptic GABAB mediated inhibition in the human motor cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Paired-pulse transcranial magnetic stimulation (TMS) can be used to non-invasively evaluate human motor cortical inhibitory circuits such as short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). Pharmacological studies suggested that SICI is mediated by GABAA receptors while LICI is probably mediated by GABAB receptors. A previous study also showed that SICI and LICI are mediated by separate neuronal populations and that LICI inhibits SICI, possibly through presynaptic GABAB receptors. The aim of this study was to examine whether the time course of motor-evoked potentials (MEP) inhibition by LICI, likely mediated through postsynaptic GABAB receptors, is different from SICI inhibition by LICI, likely mediated through presynaptic GABAB receptors. Nine healthy volunteers were studied and MEP were recorded from the first dorsal interosseous muscle. A triple-stimulus TMS paradigm was used to evaluate the effect of LICI at ISIs of 100 and 150 ms on SICI. LICI at 100 and 150 ms caused a similar degree of MEP inhibition. LICI at 100 ms led to a significant reduction of SICI but LICI at 150 ms had no effect on SICI. Repeated measures ANOVA revealed a significant interaction between the LICI mediated inhibition of SICI and ISI (P = 0.0072). These findings suggest that the time courses of presynaptic and postsynaptic GABAB receptors mediated inhibition are different in the human motor cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berardelli A, Rona S, Inghilleri M, Manfredi M (1996) Cortical inhibition in Parkinson’s disease. A study with paired magnetic stimulation. Brain 119:71–77

    Article  PubMed  Google Scholar 

  • Chen R, Wassermann EM, Canos M, Hallett M (1997) Impaired inhibition in writer’s cramp during voluntary muscle activation. Neurology 49:1054–1059

    PubMed  CAS  Google Scholar 

  • Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, Benecke R (1997) The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain 120:605–619

    Article  PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S (2002) Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry 59:347–354

    Article  PubMed  Google Scholar 

  • Daskalakis ZJ, Molnar GF, Christensen BK, Sailer A, Fitzgerald PB, Chen R (2003) An automated method to determine the transcranial magnetic stimulation-induced contralateral silent period. Clin Neurophysiol 114:938–944

    Article  PubMed  Google Scholar 

  • Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513–531

    PubMed  CAS  Google Scholar 

  • Deisz RA (1999a) GABA(B) receptor-mediated effects in human and rat neocortical neurones in vitro. Neuropharmacology 38:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Deisz RA (1999b) The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro. Neuroscience 93:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Insola A, Visocchi M, Colosimo C, Tonali PA, Rothwell JC (2002) Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clin Neurophysiol 113:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Floeter MK, Rothwell JC (1999) Releasing the brakes before pressing the gas pedal. Neurology 53:664–665

    PubMed  CAS  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Kaneko T, Ohishi H, Endo K, Araki T (1994) Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol 71:280–293

    PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Lambert NA, Wilson WA (1993) Discrimination of post- and presynaptic GABAB receptor-mediated responses by tetrahydroaminoacridine in area CA3 of the rat hippocampus. J Neurophysiol 69:630–635

    PubMed  CAS  Google Scholar 

  • Lambert NA, Wilson WA (1994) Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro. J Neurophysiol 72:121–130

    PubMed  CAS  Google Scholar 

  • Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    PubMed  CAS  Google Scholar 

  • McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol 9:212–223

    Article  PubMed  CAS  Google Scholar 

  • McDonnell MN, Orekhov Y, Ziemann U (2006) The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res 173:86–93

    Article  PubMed  CAS  Google Scholar 

  • Mintz IM, Bean BP (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10:889–898

    Article  PubMed  CAS  Google Scholar 

  • Mott DD, Lewis DV (1994) The pharmacology and function of central GABAB receptors. Int Rev Neurobiol 36:97–223

    PubMed  CAS  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498:817–823

    PubMed  CAS  Google Scholar 

  • Nicoll RA (2004) My close encounter with GABA(B) receptors. Biochem Pharmacol 68:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Perez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    Article  PubMed  CAS  Google Scholar 

  • Pitler TA, Alger BE (1994) Differences between presynaptic and postsynaptic GABAB mechanisms in rat hippocampal pyramidal cells. J Neurophysiol 72:2317–2327

    PubMed  CAS  Google Scholar 

  • Reynolds C, Ashby P (1999) Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology 53:730–735

    PubMed  CAS  Google Scholar 

  • Ridding MC, Inzelberg R, Rothwell JC (1995a) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T (1995b) Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 59:493–498

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995c) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548

    PubMed  CAS  Google Scholar 

  • Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 424:775–778

    Article  PubMed  CAS  Google Scholar 

  • Sanger TD, Garg RR, Chen R (2001) Interactions between two different inhibitory systems in the human motor cortex. J Physiol 530:307–317

    Article  PubMed  CAS  Google Scholar 

  • Sohn YH, Wiltz K, Hallett M (2002) Effect of volitional inhibition on cortical inhibitory mechanisms. J Neurophysiol 88:333–338

    PubMed  Google Scholar 

  • Strafella AP, Paus T (2001) Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol 85:2624–2629

    PubMed  CAS  Google Scholar 

  • Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M (1992) Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol 85:355–364

    Article  PubMed  CAS  Google Scholar 

  • Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Muller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Samii A, Mercuri B, Ikoma K, Oddo D, Grill SE, Hallett M (1996) Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscles. Exp Brain Res 109:158–163

    Article  PubMed  CAS  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517:591–597

    Article  CAS  Google Scholar 

  • Yamada K, Yu B, Gallagher JP (1999) Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. J Neurophysiol 81:2875–2883

    PubMed  CAS  Google Scholar 

  • Ziemann U, Netz J, Szelenyi A, Homberg V (1993) Spinal and supraspinal mechanisms contribute to the silent period in the contracting soleus muscle after transcranial magnetic stimulation of human motor cortex. Neurosci Lett 156:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Canadian Institutes of Health Research, Canadian Foundation for Innovation, Ontario Innovation Trust, University Health Network Krembil Family Chair in Neurology, the Catherine Manson Chair in Movement Disorders, and Institute of Medical Sciences at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, J., Gunraj, C. & Chen, R. Possible differences between the time courses of presynaptic and postsynaptic GABAB mediated inhibition in the human motor cortex. Exp Brain Res 184, 571–577 (2008). https://doi.org/10.1007/s00221-007-1125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1125-7

Keywords

Navigation