Skip to main content
Log in

Different cortical activations during visuospatial attention and the intention to perform a saccade

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Everyday life often necessitates dissociation between our directed attention and the intention to direct our gaze. Accordingly, the differential role of visual and motor related areas in the one or the other process is an issue of an ongoing debate. Here we used functional magnetic resonance imaging to elaborate a differentiation between visuospatial attention and the intention for a horizontal saccade in these cortical areas. Subjects fixated a central target, while they directed their attention to a colored cue in the left or right visual field. Regardless of its location, the color of the cue instructed the direction of the upcoming saccade (intention). The attention to the peripheral cue and the intention to perform the saccade were thus either directed to the same side or to opposite sides. A random effects analysis of the imaging data showed that activation of the early visual cortex and the motion sensitive complex was biased by attention to the contralateral cue, whereas activity of the color sensitive complex was modulated by the stimulus instructing a contraversive saccade. The posterior parietal cortex and the proper supplementary eye field (SEF) were most strongly activated in case of spatially congruent attention and intention. In contrast, activity of the pre-SEF and the frontal eye field was enhanced by spatially divergent attention and intention. The results presented here advance our understanding of how the human brain processes spatial information. Noteworthy, the visuomotor related areas show a subtle cortical separation for visual related attention and saccade related intention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amador N, Schlag-Rey M, Schlag J (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J Neurophysiol 84(4):2166–2177

    PubMed  CAS  Google Scholar 

  • Amador N, Schlag-Rey M, Schlag J (2004) Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance. J Neurophysiol 91(4):1672–1689

    Article  PubMed  Google Scholar 

  • Andersen RA (1995) Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex 5:457–469

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV (2001) A parametric fMRI study of overt and covert shifts of visuospatial attention. Neuroimage 14:310–321

    Article  PubMed  CAS  Google Scholar 

  • Ben Hamed S, Duhamel JR, Bremmer F, Graf W (2001) Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp Brain Res 140:127–144

    Article  PubMed  CAS  Google Scholar 

  • Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445

    Article  PubMed  CAS  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2:370–374

    Article  PubMed  CAS  Google Scholar 

  • Brown MRG, Goltz HC, Vilis T, Ford KA, Everling S (2006) Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. Neuroimage 33:644–659

    Article  PubMed  Google Scholar 

  • Carrasco M, Ling S, Read S (2004) Attention alters appearance. Nat Neurosci 7:308–313

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349

    Article  PubMed  CAS  Google Scholar 

  • Connolly JD, Goodale MA, Menon RS, Munoz DP (2002) Human fMRI evidence for the neural correlates of preparatory set. Nat Neurosci 5(12):1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen FW, Kimmig H, Schira M, Rutschmann RM, Maguire RP, Broerse A, Den Boer JA, Greenlee MW (2002) Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task. Exp Brain Res 145(2):270–274

    Article  PubMed  Google Scholar 

  • DeSouza JF, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. J Neurophysiol 89(2):1016–1023

    Article  PubMed  Google Scholar 

  • Duvernoy HM (1999) The human brain. Surface, blood supply and three-dimensional sectional anatomy. Springer, New York

    Google Scholar 

  • Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36(9):885–899

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Sci 16:553–610

    Article  Google Scholar 

  • Fischer B, Weber H (1997) Effects of stimulus conditions on the performance of antisaccades in man. Exp Brain Res 116(2):191–200

    Article  PubMed  CAS  Google Scholar 

  • Ford KA, Goltz HC, Brown MRG, Everling S (2005) Neural processes associated with antisaccade task performance investigated with event-related fMRI. J Neurophysiol 94:429–440

    Article  PubMed  Google Scholar 

  • Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106

    Article  PubMed  Google Scholar 

  • Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220

    PubMed  CAS  Google Scholar 

  • Goldberg ME, Segraves MA (1987) Visuospatial and motor attention in the monkey. Neuropsychologia 25:107–118

    Article  PubMed  CAS  Google Scholar 

  • Hamker FH (2003) The reentry hypothesis: linking eye movements to visual perception. J Vis 3:808–816

    Article  PubMed  Google Scholar 

  • Heilman KM, Bowers D, Coslett HB, Whelan H, Watson RT (1985) Directional hypokinesia: prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology 35:855–859

    PubMed  CAS  Google Scholar 

  • Husain M, Kennard C (1996) Visual neglect associated with frontal lobe infarction. J Neurol 243(9):652–657

    Article  PubMed  CAS  Google Scholar 

  • Husain M, Rorden C (2003) Non-spatially lateralized mechanisms in hemispatial neglect. Nat Rev Neurosci 4:26–36

    Article  PubMed  CAS  Google Scholar 

  • Kimmig H, Greenlee MW, Gondan M, Schira M, Kassubek J, Mergner T (2001) Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res 141(2):184–194

    Article  PubMed  CAS  Google Scholar 

  • Konen CS, Kleiser R, Wittsack HJ, Bremmer F, Seitz RJ (2004) The encoding of saccadic eye movements within human posterior parietal cortex. Neuroimage 22(1):304–314

    Article  PubMed  Google Scholar 

  • Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res 40:1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Mattingley JB, Husain M, Rorden C, Kennard C, Driver J (1998) Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 392:179–182

    Article  PubMed  CAS  Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94(1):734–740

    Article  PubMed  Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T (2006) Directional selectivity of BOLD activity in human posterior parietal cortex for memory-guided double-step saccades. J Neurophysiol 95:1645–1655

    Article  PubMed  Google Scholar 

  • Mesulam MM (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354(1387):1325–1346

    Article  PubMed  CAS  Google Scholar 

  • Moore T (1999) Shape representations and visual guidance of saccadic eye movements. Science 285:1914–1917

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908

    PubMed  CAS  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    Article  PubMed  CAS  Google Scholar 

  • Nachev P, Rees G, Parton A, Kennard C, Husain M (2005) Volition and conflict in human medial frontal cortex. Curr Biol 15:122–128

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vision Res 29:1631–1646

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11:210–216

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll GA, Alpert NM, Matthysse SW, Levy DL, Rauch SL, Holzman PS (1995) Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc Natl Acad Sci USA 92:925–929

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Oristaglio J, Schneider DM, Balan PF, Gottlieb J (2006) Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area. J Neurosci 26:8310–8319

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4:1863–1874

    PubMed  CAS  Google Scholar 

  • Robinson DL, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J Neurophysiol 41:910–932

    PubMed  CAS  Google Scholar 

  • Schall JD (2004) On the role of frontal eye field in guiding attention and saccades. Vision Res 44(12):1453–1467

    Article  PubMed  Google Scholar 

  • Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15:4464–4487

    PubMed  CAS  Google Scholar 

  • Schiller PH, Tehovnik EJ (2001) Look and see: how the brain moves your eyes about. Prog Brain Res 134:127–142

    Article  PubMed  CAS  Google Scholar 

  • Schlag-Rey M, Amador N, Sanchez H, Schlag J (1997) Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390(6658):398–401

    Article  PubMed  CAS  Google Scholar 

  • Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384

    Article  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (2000) Intention-related activity in the posterior parietal cortex: a review. Vision Res 40:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Snyder LH, Calton JL, Dickinson AR, Lawrence BM (2002) Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement. J Neurophysiol 87:2279–2286

    PubMed  Google Scholar 

  • Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305

    Article  PubMed  CAS  Google Scholar 

  • Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR (1996) Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J Neurophysiol 75(1):454–468

    PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

  • Tian JR, Lynch JC (1996) Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. J Neurophysiol 76:2754–2771

    PubMed  CAS  Google Scholar 

  • Tolias AS, Moore T, Smirnakis SM, Tehovnik EJ, Siapas AG, Schiller PH (2001) Eye movements modulate visual receptive fields of V4 neurons. Neuron 29:757–767

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Barash S (2000) Neuronal switching of sensorimotor transformations for antisaccades. Nature 408(6815):971–975

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Barash S (2004) Persistent LIP activity in memory antisaccades: working memory for a sensor transformation. J Neurophysiol 91(3):1424–1441

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the European Union (EUROKINESIS), Deutsche Forschungsgemeinschaft (Br 2282), Brain Imaging Center West, and Bundesministerum fuer Bildung und Forschung. We thank Erika Rädisch for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Konen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konen, C.S., Kleiser, R., Bremmer, F. et al. Different cortical activations during visuospatial attention and the intention to perform a saccade. Exp Brain Res 182, 333–341 (2007). https://doi.org/10.1007/s00221-007-0995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0995-z

Keywords

Navigation