The effect of orientation on prehension movement time

Abstract

We explored the relationship between hand orientation and movement time. Three groups of participants (n = 8 per group) were asked to grasp an object rotated in one of the following planes: (1) coronal; (2) sagittal; (3) horizontal. In the coronal plane, the rotational requirements directly mapped onto the neuromuscular demands associated with a single joint-level degree of freedom movement. A simple lawful relationship was found between the extent of rotation (pronation or supination) and duration. Reach-to-grasp movements to objects rotated in the sagittal and horizontal plane produced different movement patterns. These patterns increased the muscle level degrees of freedom recruited (higher neuromuscular demands) and movement duration increased correspondingly though not in a simple manner. The results of the present study show unambiguously that object orientation influences the duration of reach-to-grasp movements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Cirstea MC, Levin MF (2000) Compensatory strategies for reaching in stroke. Brain 123:940–953

    PubMed  Article  Google Scholar 

  2. Desmurget M, Prablanc C, Rossetti Y, Arzi M, Paulignan Y, Urquizar C, Mignot JC (1995) Postural and synergic control for three-dimensional movements of reaching and grasping. J Neurophysiol 74:905–910

    PubMed  CAS  Google Scholar 

  3. Desmurget M, Grea H, Prablanc C (1998) Final posture of the upper limb depends on the initial position of the hand during prehension movements. Exp Brain Res 119(4):511–516

    PubMed  Article  CAS  Google Scholar 

  4. Fisk JD, Goodale M (1988) The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit. Exp Brain Res 72:425–435

    PubMed  Article  CAS  Google Scholar 

  5. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47(6):381–391

    PubMed  Article  CAS  Google Scholar 

  6. Frak V, Paulignan Y, Jeannerod M (2001) Orientation of the opposition axis in mentally simulated grasping. Exp Brain Res 136(1):120–127

    PubMed  Article  CAS  Google Scholar 

  7. Gentilucci M, Castiello U, Corradini ML, Scarpa M, Umilta C, Rizzolatti G (1991) Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 29:361–378

    PubMed  Article  CAS  Google Scholar 

  8. Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    PubMed  CAS  Google Scholar 

  9. Kerr R (1978) Diving, adaptation, and Fitts’ law. J Mot Behav 10:255–260

    PubMed  CAS  Google Scholar 

  10. Loftus A, Servos P, Goodale MA, Mendarozqueta N, Mon-Williams M (2004) When two eyes are better than one in prehension: monocular viewing and end-point variance. Exp Brain Res 158(3):317–327

    PubMed  Google Scholar 

  11. MacKenzie IS (1989) A note on the information-theoretic basis of Fitts’ law. J Mot Behav 21(3):323–330

    PubMed  CAS  Google Scholar 

  12. Mamassian P (1997) Prehension of objects oriented in three-dimensional space. Exp Brain Res 114(2):235–245

    PubMed  Article  CAS  Google Scholar 

  13. Marteniuk RG, Leavit JL, MacKenzie CL, Athenes S (1990) Functional relationships between grasp and transport components in a prehension task. Hum Mov Sci 9:149–176

    Article  Google Scholar 

  14. McIntosh RD Tresilian JR, Mon-Williams M (2006) Lawful relationships between object properties and movement duration. In: Proceedings of the Experimental Psychology Society 11–12 April (in print)

  15. Mon-Williams M, Bingham GP (2005) Task constraints alter prehension movements qualitatively and quantitatively. J Vis 5(8):124

    Article  Google Scholar 

  16. Mon-Williams M, Tresilian JR (2001) A simple rule of thumb for elegant prehension. Curr Biol 11:1058–1061

    PubMed  Article  CAS  Google Scholar 

  17. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601

    PubMed  CAS  Google Scholar 

  18. Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114(2):226–234

    PubMed  Article  CAS  Google Scholar 

  19. Poulton EC (1989) Bias in quantitative judgements. Lawrence Erlbaum, East Sussex

    Google Scholar 

  20. Rosenbaum DA, Vaughan J, Barnes HJ, Jorgensen MJ (1992) Time course of movement planning: selection of handgrips for object manipulation. J Exp Psychol Learn Mem Cogn 18(5):1058–1073

    PubMed  Article  CAS  Google Scholar 

  21. Sheridan MR (1979) A reappraisal of Fitts’ law. J Mot Behav 11:179–188

    Google Scholar 

  22. Smeets JB, Brenner E (1999) A new view on grasping. Motor Control 3(3):237–271

    PubMed  CAS  Google Scholar 

  23. Soechting JF, Flanders M (1993) Parallel, interdependent channels for location and orientation in sensorimotor transformations for reaching and grasping. J Neurophysiol 70(3):1137–1150

    PubMed  CAS  Google Scholar 

  24. Soechting JF, Dufresne JR, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1(7):710–720

    PubMed  CAS  Google Scholar 

  25. Stelmach GE, Castiello U, Jeannerod M (1994) Orienting the finger opposition space during prehension movements. J Mot Behav 26(2):178–186

    PubMed  CAS  Article  Google Scholar 

  26. Tresilian JR, Stelmach GE, Adler CH (1997) Stability of reach-to-grasp movement patterns in Parkinson’s disease. Brain 120(Pt 11):2093–2111

    PubMed  Article  Google Scholar 

  27. Welford (1968) Fundamentals of skill. Methuen, London, p 153

Download references

Acknowledgments

This research was supported by a grant from Action Medical Research. The first two authors were supported by studentships from the Hersenstichting Nederland, the Stichting Bekker-La Bastide Fonds, and the VU Fondsendesk. The first author was additionally sponsored by the Dr. Hendrik Muller’s Vaderlandsch Fonds, the Stichting Doopsgezind Kindersteunfonds, and the Stichting Fundatie van de Vrijvrouwe van Renswoude.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Mon-Williams.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Bergen, E., van Swieten, L.M., Williams, J.H.G. et al. The effect of orientation on prehension movement time. Exp Brain Res 178, 180–193 (2007). https://doi.org/10.1007/s00221-006-0722-1

Download citation

Keywords

  • Orientation
  • Prehension
  • Movement
  • Coordination
  • Duration
  • Rotation