Skip to main content
Log in

The GABAA receptor-mediated recurrent inhibition in ventral compared with dorsal CA1 hippocampal region is weaker, decays faster and lasts less

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Hippocampal functions appear to be segregated along the dorso-ventral axis of the structure. Differences at the cellular and local neuronal network level may be involved in this functional segregation. In this study the characteristics of CA1 recurrent inhibition (RI) were measured and compared between dorsal (DH, n = 95) and ventral (VH, n = 60) hippocampal slices, using recordings of suprathreshold field potentials. RI strength was estimated as the percentile decrease of the population spike (PS) amplitude evoked with an orthodromic stimulus (at the Schaffer collaterals) when preceded by an antidromic stimulus (at the alveus). Varying the interpulse interval (IPI) between the two stimuli, we estimated RI duration. Alvear stimulation produced significant PS suppression in both VH and DH at every IPI tested, from 10 to 270 ms. Moreover, gradually more oblique DH (but not VH) slices displayed increasing RI, which at IPIs ≤125 ms was reversibly abolished by the GABAA receptor antagonist picrotoxin (10 μM). The GABAA-mediated RI, measured under the blockade of GABAB receptors, was weaker, decayed faster and lasted less in VH compared to DH slices, regardless of the slice orientation. Specifically, in VH compared to DH, the PS suppression at 20 ms was 34.4 ± 4.5% versus 69.9 ± 6.5% (P < 0.001), the time constant of RI decay was 29 ± 2.4 versus 87.5 ± 13.6 ms (P < 0.01) and the duration was 50 versus 125 ms (P < 0.001). Thus, GABAA-mediated RI may control the CA1 excitatory output less effectively in VH compared to DH. The observed dorso-ventral differences in RI contribute to the longitudinal diversification of the structure and may underlie to some extent the region-specificity of hippocampal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike K, Tanaka S, Tojo H, Fukumoto S, Imamura S, Takigawa M (2001) Kainic acid-induced dorsal and ventral hippocampal seizures in rats. Brain Res 900:65–71

    PubMed  CAS  Google Scholar 

  • Alger BE, Nicoll RA (1982) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 328:105–123

    PubMed  CAS  Google Scholar 

  • Alger BE (1984) Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro. J Neurophysiol 52:892–910

    PubMed  CAS  Google Scholar 

  • Ali AB, Bannister AP, Thomson AM (1999) IPSPs elicited in CA1 pyramidal cells by putative basket cells in slices of adult rat hippocampus. Eur J Neurosci 11:1741–1753

    PubMed  CAS  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    PubMed  CAS  Google Scholar 

  • Andersen P, Eccles JC, Loyning Y (1964) Location of postsynaptic inhibitory synapses on hippocampal pyramids. J Neurophysiol 27:592–607

    PubMed  CAS  Google Scholar 

  • Andersen P, Bliss TV, Skrede KK (1971) Unit analysis of hippocampal polulation spikes. Exp Brain Res 13:208–221

    PubMed  CAS  Google Scholar 

  • Andersen P, Bland BH, Dudar JD (1973) Organization of the hippocampal output. Exp Brain Res 17:152–168

    PubMed  CAS  Google Scholar 

  • Aradi I, Maccaferri G (2004) Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus. J Neurosci 24:9681–9692

    PubMed  CAS  Google Scholar 

  • Arai A, Silberg J, Lynch G (1995) Differences in the refractory properties of two distinct inhibitory circuitries in field CA1 of the hippocampus. Brain Res 704:298–306

    PubMed  CAS  Google Scholar 

  • Avoli M (1996) GABA-mediated synchronous potentials and seizure generation. Epilepsia 37:1035–1042

    PubMed  CAS  Google Scholar 

  • Bacci A, Huguenard JR (2006) Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49:119–130

    PubMed  CAS  Google Scholar 

  • Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 113:1170–1188

    PubMed  CAS  Google Scholar 

  • Bannerman DM, Grubb M, Deacon RM, Yee BK, Feldon J, Rawlins JN (2003) Ventral hippocampal lesions affect anxiety but not spatial learning. Behav Brain Res 139:197–213

    PubMed  CAS  Google Scholar 

  • Bannerman DM, Matthews P, Deacon RM, Rawlins JN (2004) Medial septal lesions mimic effects of both selective dorsal and ventral hippocampal lesions. Behav Neurosci 118:1033–1041

    PubMed  CAS  Google Scholar 

  • Bast T, Zhang WN, Feldon J (2001a) Hyperactivity, decreased startle reactivity, and disrupted prepulse inhibition following disinhibition of the rat ventral hippocampus by the GABA(A) receptor antagonist picrotoxin. Psychopharmacology (Berl) 156:225–233

    CAS  Google Scholar 

  • Bast T, Zhang WN, Heidbreder C, Feldon J (2001b) Hyperactivity and disruption of prepulse inhibition induced by N-methyl-d-aspartate stimulation of the ventral hippocampus and the effects of pretreatment with haloperidol and clozapine. Neuroscience 103:325–335

    CAS  Google Scholar 

  • Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    PubMed  CAS  Google Scholar 

  • Behrens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8:1560–1567

    PubMed  CAS  Google Scholar 

  • Bekenstein J, Lothman EA (1991) Comparison of the ontogeny of excitatory and inhibitory neurotransmission in the CA1 region and dentate gyrus of the rat hippocampal formation. Dev Brain Res 63:237–243

    CAS  Google Scholar 

  • Benkwitz C, Banks MI, Pearce RA (2004) Influence of GABAA receptor gamma2 splice variants on receptor kinetics and isoflurane modulation. Anesthesiology 101:924–936

    PubMed  CAS  Google Scholar 

  • Borck C, Jefferys JG (1999) Seizure-like events in disinhibited ventral slices of adult rat hippocampus. J Neurophysiol 82:2130–2142

    PubMed  CAS  Google Scholar 

  • Bracci E, Vreugdenhil M, Hack SP, Jefferys JG (2001) Dynamic modulation of excitation and inhibition during stimulation at gamma and beta frequencies in the CA1 hippocampal region. J Neurophysiol 85:2412–2422

    PubMed  CAS  Google Scholar 

  • Bragdon AC, Taylor DM, Wilson WA (1986) Potassium-induced epileptiform activity in area CA3 varies markedly along the septotemporal axis of the rat hippocampus. Brain Res 378:169–173

    PubMed  CAS  Google Scholar 

  • Buhl EH, Cobb SR, Halasy K, Somogyi P (1995) Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur J Neurosci 7:1989–2004

    PubMed  CAS  Google Scholar 

  • Burman MA, Starr MJ, Gewirtz JC (2006) Dissociable effects of hippocampus lesions on expression of fear and trace fear conditioning memories in rats. Hippocampus 16:103–113

    PubMed  Google Scholar 

  • Busatto GF, Pilowsky LS, Costa DC, Ell PJ, David AS, Lucey JV, Kerwin RW (1997) Correlation between reduced in vivo benzodiazepine receptor binding and severity of psychotic symptoms in schizophrenia. Am J Psychiatry 154:56–63

    PubMed  CAS  Google Scholar 

  • Buzsaki G (1984) Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22:131–153

    PubMed  CAS  Google Scholar 

  • Colgin LL, Kubota D, Jia Y, Rex CS, Lynch G (2004) Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves. J Physiol 558:953–961

    PubMed  CAS  Google Scholar 

  • Colombo M, Fernandez T, Nakamura K, Gross CG (1998) Functional differentiation along the anterior–posterior axis of the hippocampus in monkeys. J Neurophysiol 80:1002–1005

    PubMed  CAS  Google Scholar 

  • Cope DW, Maccaferri G, Marton LF, Roberts JD, Cobden PM, Somogyi P (2002) Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience 109:63–80

    PubMed  CAS  Google Scholar 

  • Davies CH, Collingridge GL (1996) Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. J Physiol 496:451–470

    PubMed  CAS  Google Scholar 

  • Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513–531

    PubMed  CAS  Google Scholar 

  • de Hoz L, Knox J, Morris RG (2003) Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol. Hippocampus 13:587–603

    PubMed  Google Scholar 

  • Degroot A, Treit D (2002) Dorsal and ventral hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Brain Res 949:60–70

    PubMed  CAS  Google Scholar 

  • Degroot A, Treit D (2004) Anxiety is functionally segregated within the septo-hippocampal system. Brain Res 1001:60–71

    PubMed  CAS  Google Scholar 

  • Deller T, Adelmann G, Nitsch R, Frotscher M (1996) The alvear pathway of the rat hippocampus. Cell Tissue Res 286:293–303

    PubMed  CAS  Google Scholar 

  • Derchansky M, Shahar E, Wennberg RA, Samoilova M, Jahromi SS, Abdelmalik PA, Zhang L, Carlen PL (2004) Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus. Hippocampus 14:935–947

    PubMed  CAS  Google Scholar 

  • Dingledine R, Gjerstad L (1980) Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol 305:297–313

    PubMed  CAS  Google Scholar 

  • Dingledine R, Langmoen IA (1980) Conductance changes and inhibitory actions of hippocampal recurrent IPSPs. Brain Res 185:277–287

    PubMed  CAS  Google Scholar 

  • Dolan RJ, Fletcher PF (1999) Encoding and retrieval in human medial temporal lobes: an empirical investigation using functional magnetic resonance imaging (fMRI). Hippocampus 9:25–34

    PubMed  CAS  Google Scholar 

  • Dominguez-Perrot C, Feltz P, Poulter MO (1996) Recombinant GABAA receptor desensitization: the role of the gamma 2 subunit and its physiological significance. J Physiol 497:145–159

    PubMed  CAS  Google Scholar 

  • Draguhn A, Traub RD, Bibbig A, Schmitz D (2000) Ripple (approximately 200-Hz) oscillations in temporal structures. J Clin Neurophysiol 17:361–376

    PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    PubMed  CAS  Google Scholar 

  • Fisahn A (2005) Kainate receptors and rhythmic activity in neuronal networks: hippocampal gamma oscillations as a tool. J Physiol 562:65–72

    PubMed  CAS  Google Scholar 

  • Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495

    PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    PubMed  CAS  Google Scholar 

  • Fricker D, Miles R (2001) Interneurons, spike timing, and perception. Neuron 32:771–774

    PubMed  CAS  Google Scholar 

  • Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci USA 102:13295–13300

    PubMed  CAS  Google Scholar 

  • Glykys J, Mody I (2006) Hippocampal network hyperactivity following selective reduction of tonic inhibition in GABAA receptor {alpha}5 subunit deficient mice. J Neurophysiol. DOI 10.1152/jn.01122.2005

  • Gilbert M, Racine RJ, Smith GK (1985) Epileptiform burst responses in ventral vs dorsal hippocampal slices. Brain Res 361:389–391

    PubMed  CAS  Google Scholar 

  • Greco B, Prevost J, Gioanni Y (1994) Intracerebral microinjections of dermorphin: search for the epileptic induction thresholds. Neuroreport 5:2169–2172

    PubMed  CAS  Google Scholar 

  • Gulyas AI, Megias M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19:10082–10097

    PubMed  CAS  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435

    PubMed  CAS  Google Scholar 

  • Hobin JA, Ji J, Maren S (2006) Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 16:174–182

    PubMed  CAS  Google Scholar 

  • Hock BJ Jr, Bunsey MD (1998) Differential effects of dorsal and ventral hippocampal lesions. J Neurosci 18:7027–7032

    PubMed  CAS  Google Scholar 

  • Hortnagl H, Berger ML, Sperk G, Pifl C (1991) Regional heterogeneity in the distribution of neurotransmitter markers in the rat hippocampus. Neuroscience 45:261–272

    PubMed  CAS  Google Scholar 

  • Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I (2003) GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 90:2690–2701

    PubMed  CAS  Google Scholar 

  • Jinno S, Kosaka T (2003) Heterogeneous expression of the cholecystokinin-like immunoreactivity in the mouse hippocampus, with special reference to the dorsoventral difference. Neuroscience 122:869–884

    PubMed  CAS  Google Scholar 

  • Kandel ER, Spencer WA, Brinley FJ (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225–242

    PubMed  CAS  Google Scholar 

  • Kesner RP, Lee I, Gilbert P (2004) A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci 15:333–351

    PubMed  Google Scholar 

  • Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 99:10825–10830

    PubMed  CAS  Google Scholar 

  • Klausberger T, Roberts JD, Somogyi P (2002) Cell type- and input-specific differences in the number and subtypes of synaptic GABA(A) receptors in the hippocampus. J Neurosci 22:2513–2521

    PubMed  CAS  Google Scholar 

  • Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    PubMed  CAS  Google Scholar 

  • Klausberger T, Marton LF, O’Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782–9793

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23:2440–2452

    PubMed  CAS  Google Scholar 

  • Kostopoulos G, Moschovos C, Papatheodoropoulos C (2005) Functional differentiation along the longitudinal axis of hippocampus and its possible relevance to epileptogenesis. Epileptic Disord 7:167–170

    Google Scholar 

  • Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035

    PubMed  CAS  Google Scholar 

  • Lawrence JJ, McBain CJ (2003) Interneuron diversity series: containing the detonation–feedforward inhibition in the CA3 hippocampus. Trends Neurosci 26:631–640

    PubMed  CAS  Google Scholar 

  • Lee PH, Xie CW, Lewis DV, Wilson WA, Mitchell CL, Hong JS (1990) Opioid-induced epileptiform bursting in hippocampal slices: higher susceptibility in ventral than dorsal hippocampus. J Pharmacol Exp Ther 253:545–551

    PubMed  CAS  Google Scholar 

  • Leung LS (1998) Generation of theta and gamma rhythms in the hippocampus. Neurosci Biobehav Rev 22:275–290

    PubMed  CAS  Google Scholar 

  • Leung LS, Fu XW (1994) Factors affecting paired-pulse facilitation in hippocampal CA1 neurons in vitro. Brain Res 650:75–84

    PubMed  CAS  Google Scholar 

  • Luhmann HJ, Mittmann T, van Luijtelaar G, Heinemann U (1995) Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy. Epilepsy Res 22:43–51

    PubMed  CAS  Google Scholar 

  • Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications—making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    PubMed  CAS  Google Scholar 

  • Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524:91–116

    PubMed  CAS  Google Scholar 

  • Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550(Pt 3): 873–887

    PubMed  CAS  Google Scholar 

  • Magloczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340

    PubMed  CAS  Google Scholar 

  • Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97:4398–4403

    PubMed  CAS  Google Scholar 

  • Mann EO, Suckling JM, Hajos N, Greenfield SA, Paulsen O (2005) Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45:105–117

    PubMed  CAS  Google Scholar 

  • Martin PD, Shapiro ML (2000) Disparate effects of long-term potentiation on evoked potentials and single CA1 neurons in the hippocampus of anesthetized rats. Hippocampus 10:207–212

    PubMed  CAS  Google Scholar 

  • Maruki K, Izaki Y, Hori K, Nomura M, Yamauchi T (2001) Effects of rat ventral and dorsal hippocampus temporal inactivation on delayed alternation task. Brain Res 895:273–276

    PubMed  CAS  Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23

    PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2004) Parvalbumin-containing interneurons in the basolateral amygdala express high levels of the alpha1 subunit of the GABAA receptor. J Comp Neurol 473:137–146

    PubMed  CAS  Google Scholar 

  • Michelson HB, Lothman EW (1989) An in vivo electrophysiological study of the ontogeny of excitatory and inhibitory processes in the rat hippocampus. Brain Res Dev Brain Res 47:113–122

    PubMed  CAS  Google Scholar 

  • Miles R, Toth K, Gulyas AI, Hajos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823

    PubMed  CAS  Google Scholar 

  • Mody I (2001) Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26:907–913

    PubMed  CAS  Google Scholar 

  • Mody I (2005) Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition. J Physiol 562:37–46

    PubMed  CAS  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    PubMed  CAS  Google Scholar 

  • Moser E, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13:3916–3925

    PubMed  CAS  Google Scholar 

  • Moser MB, Moser EI, Forrest E, Andersen P, Morris RG (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci USA 92:9697–9701

    PubMed  CAS  Google Scholar 

  • Nathan T, Lambert JD (1991) Depression of the fast IPSP underlies paired-pulse facilitation in area CA1 of the rat hippocampus. J Neurophysiol 66:1704–1715

    PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoll RA (1984) A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol 348:239–254

    PubMed  CAS  Google Scholar 

  • Nimmrich V, Maier N, Schmitz D, Draguhn A (2005) Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663–670

    PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  • Papatheodoropoulos C, Kostopoulos G (1998) Development of a transient increase in recurrent inhibition and paired-pulse facilitation in hippocampal CA1 region. Brain Res Dev Brain Res 108:273–285

    PubMed  CAS  Google Scholar 

  • Papatheodoropoulos C, Kostopoulos G (2002) Spontaneous, low frequency (approximately 2–3 Hz) field activity generated in rat ventral hippocampal slices perfused with normal medium. Brain Res Bull 57:187–193

    PubMed  Google Scholar 

  • Papatheodoropoulos C, Kostopoulos G (2003) Mechanisms of generation of a novel rhythmical network activity in ventral hippocampal slices. Soc Neurosci Abstr No 582.8

  • Papatheodoropoulos C, Asprodini E, Nikita I, Koutsona C, Kostopoulos G (2002) Weaker synaptic inhibition in CA1 region of ventral compared to dorsal rat hippocampal slices. Brain Res 948:117–121

    PubMed  CAS  Google Scholar 

  • Papatheodoropoulos C, Moschovos C, Kostopoulos G (2005) Greater contribution of N-methyl-D-aspartic acid receptors in ventral compared to dorsal hippocampal slices in the expression and long-term maintenance of epileptiform activity. Neuroscience 135:765–779

    PubMed  CAS  Google Scholar 

  • Pentkowski NS, Blanchard DC, Lever C, Litvin Y, Blanchard RJ (2006) Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur J Neurosci 23:2185–2196

    PubMed  Google Scholar 

  • Pothuizen HH, Zhang WN, Jongen-Relo AL, Feldon J, Yee BK (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur J Neurosci 19:705–712

    PubMed  Google Scholar 

  • Pouille F, Scanziani M (2001) Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293:1159–1163

    PubMed  CAS  Google Scholar 

  • Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717–723

    PubMed  CAS  Google Scholar 

  • Racine R, Rose PA, Burnham WM (1977) Afterdischarge thresholds and kindling rates in dorsal and ventral hippocampus and dentate gyrus. Can J Neurol Sci 4:273–278

    PubMed  CAS  Google Scholar 

  • Rawlins JN, Green KF (1977) Lamellar organisation in the rat hippocampus. Exp Brain Res 28:335–344

    PubMed  CAS  Google Scholar 

  • Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JN, Feldon J, Bannerman DM (1999) Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav Neurosci 113:1189–1203

    PubMed  CAS  Google Scholar 

  • Rudy JW, Matus-Amat P (2005) The ventral hippocampus supports a memory representation of context and contextual fear conditioning: implications for a unitary function of the hippocampus. Behav Neurosci 119:154–163

    PubMed  Google Scholar 

  • Samulack DD, Lacaille JC (1993) Hyperpolarizing synaptic potentials evoked in CA1 pyramidal cells by glutamate stimulation of interneurons from the oriens/alveus border of rat hippocampal slices. II. Sensitivity to GABA antagonists. Hippocampus 3:345–358

    PubMed  CAS  Google Scholar 

  • Sayin U, Osting S, Hagen J, Rutecki P, Sutula T (2003) Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J Neurosci 23:2759–2768

    PubMed  CAS  Google Scholar 

  • Sloviter RS (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235:73–76

    PubMed  CAS  Google Scholar 

  • Sloviter RS (1991) Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus 1:31–40

    PubMed  CAS  Google Scholar 

  • Sloviter RS, Ali-Akbarian L, Elliott RC, Bowery BJ, Bowery NG (1999) Localization of GABA(B) (R1) receptors in the rat hippocampus by immunocytochemistry and high resolution autoradiography, with specific reference to its localization in identified hippocampal interneuron subpopulations. Neuropharmacology 38:1707–1721

    PubMed  CAS  Google Scholar 

  • Small SA (2002) The longitudinal axis of the hippocampal formation: its anatomy, circuitry, and role in cognitive function. Rev Neurosci 13:183–194

    PubMed  Google Scholar 

  • Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562:9–26

    PubMed  CAS  Google Scholar 

  • Sotiriou E, Papatheodoropoulos C, Angelatou F (2005) Differential expression of gamma-aminobutyric acid—a receptor subunits in rat dorsal and ventral hippocampus. J Neurosci Res 82:690–700

    PubMed  CAS  Google Scholar 

  • Spencer WA, Kandel ER (1961) Hippocampal neuron responses to selective activation of recurrent collaterals of hippocampofugal axons. Exp Neurol 4:149–161

    Google Scholar 

  • Stanford IM, Wheal HV, Chad JE (1995) Bicuculline enhances the late GABAB receptor-mediated paired-pulse inhibition observed in rat hippocampal slices. Eur J Pharmacol 277:229–234

    PubMed  CAS  Google Scholar 

  • Strange BA, Fletcher PC, Henson RN, Friston KJ, Dolan RJ (1999) Segregating the functions of human hippocampus. Proc Natl Acad Sci USA 96:4034–4039

    PubMed  CAS  Google Scholar 

  • Steffenach HA, Witter M, Moser MB, Moser EI (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45:301–313

    PubMed  CAS  Google Scholar 

  • Struble RG, Desmond NL, Levy WB (1978) Anatomical evidence for interlamellar inhibition in the fascia dentata. Brain Res 152:580–585

    PubMed  CAS  Google Scholar 

  • Thomson AM, Bannister AP, Hughes DI, Pawelzik H (2000) Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurons in slices of rat hippocampus. Eur J Neurosci 12:425–436

    PubMed  CAS  Google Scholar 

  • Tomasulo RA, Levy WB, Steward O (1991) LTP-associated EPSP/spike dissociation in the dentate gyrus: GABAergic and non-GABAergic components. Brain Res 561:27–34

    PubMed  CAS  Google Scholar 

  • Trivedi MA, Coover GD (2006) Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats. Behav Brain Res 168:289–298

    PubMed  Google Scholar 

  • Tsubokawa H, Ross WN (1996) IPSPs modulate spike backpropagation and associated [Ca2+] changes in the dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol 76:2896–2906

    PubMed  CAS  Google Scholar 

  • Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21:3009–3016

    PubMed  CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    PubMed  CAS  Google Scholar 

  • Vreugdenhil M, Musson RS, Jefferys JG (2001) Dorso-ventral differences in recurrent excitation in rat hippocampal area CA1. Soc Neurosci. Abstract No 969.5

  • Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336

    PubMed  CAS  Google Scholar 

  • Whittington MA, Traub RD (2003) Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26:676–682

    PubMed  CAS  Google Scholar 

  • Wierenga CJ, Wadman WJ (2003) Excitatory inputs to CA1 interneurons show selective synaptic dynamics. J Neurophysiol 90:811–821

    PubMed  Google Scholar 

  • Witter MP, Wouterlood FG, Naber PA, Van Haeften T (2000) Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci 911:1–24

    Article  PubMed  CAS  Google Scholar 

  • Wu CP, Cheung G, Rakhshani N, Parvardeh S, Asl MN, Huang HL, Zhang L (2005a) Ca3 neuronal activities of dorsal and ventral hippocampus are differentially altered in rats after prolonged post-ischemic survival. Neuroscience 130:527–539

    CAS  Google Scholar 

  • Wu CP, Asl MN, Gillis J, Skinner FK, Zhang L (2005b) An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. J Neurophysiol 94:741–753

    Google Scholar 

  • Yanovsky Y, Sergeeva OA, Freund TF, Haas HL (1997) Activation of interneurons at the stratum oriens/alveus border suppresses excitatory transmission to apical dendrites in the CA1 area of the mouse hippocampus. Neuroscience 77:87–96

    PubMed  CAS  Google Scholar 

  • Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46

    PubMed  CAS  Google Scholar 

  • Zhang WN, Pothuizen HH, Feldon J, Rawlins JN (2004) Dissociation of function within the hippocampus: effects of dorsal, ventral and complete excitotoxic hippocampal lesions on spatial navigation. Neuroscience 127:289–300

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Greek General Secretariat for Research and Technology (PENED 2001, No 153) a grant from the University of Patras “Karatheodoris” Program (Research Committee, No 3015) and a grant from the Empirikio Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Papatheodoropoulos.

Additional information

Theodoros Petrides and Panagiotis Georgopoulos have equally contributed to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrides, T., Georgopoulos, P., Kostopoulos, G. et al. The GABAA receptor-mediated recurrent inhibition in ventral compared with dorsal CA1 hippocampal region is weaker, decays faster and lasts less. Exp Brain Res 177, 370–383 (2007). https://doi.org/10.1007/s00221-006-0681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0681-6

Keywords

Navigation