Skip to main content

Advertisement

Log in

Spatial coding capacity of central otolith neurons

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This review focuses on recent approaches to unravel the capacity of otolith-related brainstem neurons for coding head orientations. In the first section, the spatiotemporal features of central vestibular neurons in response to natural otolithic stimulation are reviewed. Experiments that reveal convergent inputs from bilateral vestibular end organs bear important implications on the processing of spatiotemporal signals and integration of head orientational signals within central otolith neurons. Another section covers the maturation profile of central otolith neurons in the recognition of spatial information. Postnatal changes in the distribution pattern of neuronal subpopulations that subserve the horizontal and vertical otolith systems are highlighted. Lastly, the expression pattern of glutamate receptor subunits and neurotrophin receptors in otolith-related neurons within the vestibular nuclear complex are reviewed in relation to the potential roles of these receptors in the development of vestibular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angelaki DE (1992) Two-dimensional coding of linear acceleration and the angular velocity sensitivity of the otolith system. Biol Cybern 67:511–522

    PubMed  CAS  Google Scholar 

  • Angelaki DE (1998) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses to translation. J Neurophysiol 80:680–695

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84:2113–2132

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Dickman JD (2003) Gravity or translation: central processing of vestibular signals to detect motion or tilt. J Vestib Res 13:245–253

    PubMed  Google Scholar 

  • Angelaki DE, Hess BJM (1996) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation. J Neurophysiol 75:2405–2424

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Perachio AA, Mustari MJ, Strunk CL (1992) Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation. J Neurophysiol 68:1895–1900

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Bush GA, Perachio AA (1993) Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons. J Neurosci 13:1403–1417

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Merfeld DM, Hess BJ (2000) Low-frequency otolith and semicircular canal interactions after canal inactivation. Exp Brain Res 132:539–549

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Wei M, Merfeld DM (2001) Vestibular discrimination of gravity and translational acceleration. Ann NY Acad Sci 942:114–127

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430:560–564

    PubMed  CAS  Google Scholar 

  • Bekkers JM, Stevens CF (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–233

    PubMed  CAS  Google Scholar 

  • Bolger C, Sansom AJ, Smith PF, Darlington CL (1999) An antisense oligonucleotide to brain-derived neurotrophic factor delays postural compensation following unilateral labyrinthectomy in guinea pig. Neuroreport 10:1485–1488

    PubMed  CAS  Google Scholar 

  • Boyle R, Highstein SM (1990) Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents. J Neurosci 10:1570–1582

    PubMed  CAS  Google Scholar 

  • Boyle R, Goldberg JM, Highstein SM (1992) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways. J Neurophysiol 68:471–484

    PubMed  CAS  Google Scholar 

  • Brocard F, Vinay L, Clarac F (1999) Development of hindlimb postural control during the first postnatal week in the rat. Dev Brain Res 117:81–89

    CAS  Google Scholar 

  • Bush GA, Perachio AA, Angelaki DE (1993) Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration. J Neurophysiol 69:2039–2055

    PubMed  CAS  Google Scholar 

  • Buttner-Ennever JA (1999) A review of otolith pathways to brainstem and cerebellum. Ann NY Acad Sci 871:51–64

    PubMed  CAS  Google Scholar 

  • Capocchi G, Della Torre G, Grassi S, Petorossi VE, Zampolini M (1992) NMDA-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei. Brain Res 90:546–550

    CAS  Google Scholar 

  • Chan YS (1997) The coding of head orientations in neurons of bilateral vestibular nuclei of cats after unilateral labyrinthectomy: response to off-vertical axis rotation. Exp Brain Res 114:293–303

    PubMed  CAS  Google Scholar 

  • Chan YS, Cheung YM (1992) Response of otolith-related neurons in bilateral vestibular nucleus of acute hemilabyrinthectomized cats to off-vertical axis rotations. Ann NY Acad Sci 656:755–765

    PubMed  CAS  Google Scholar 

  • Chan YS, Hwang JC, Cheung YM (1977) Crossed sacculo-ocular pathway via the Deiters’ nucleus in cats. Brain Res Bull 2:1–6

    PubMed  CAS  Google Scholar 

  • Chan YS, Hwang JC, Cheung YM (1979) Vestibular function of saccule in cats as indicated by the response of Deiters’ nucleus to static tilts. Exp Brain Res 35:591–594

    PubMed  CAS  Google Scholar 

  • Chan YS, Cheung YM, Hwang JC (1985) Effect of tilt on the response of neuronal activity within the cat vestibular nuclei during slow and constant velocity rotation. Brain Res 345:271–278

    PubMed  CAS  Google Scholar 

  • Chan YS, Cheung YM, Hwang JC (1987) Response characteristics of neurons in the cat vestibular nuclei during slow and constant velocity off-vertical axes rotations in the clockwise and counterclockwise directions. Brain Res 406:294–301

    PubMed  CAS  Google Scholar 

  • Chan YS, Shum DKY, Lai CH (1999) Neuronal response sensitivity to bidirectional off-vertical axis rotations: a dimension of imbalance in the lateral vestibular nuclei of cats after unilateral labyrinthectomy. Neuroscience 94:831–843

    PubMed  CAS  Google Scholar 

  • Chan YS, Lai CH, Shum DKY (2002) Bilateral otolith contribution of spatial coding in the vestibular system. J Biomed Sci 9:574–586

    PubMed  CAS  Google Scholar 

  • Chan YS, Lai CH, Shum DKY (2003) Response properties of Y group neurons to crossed otolith inputs in the cat. Neuroreport 14:729–733

    PubMed  CAS  Google Scholar 

  • Chen LW, Yung KKL, Chan YS (2000) Co-localization of NMDA receptors and AMPA receptors in neurons of the vestibular nuclei of rats. Brain Res 884:87–97

    PubMed  CAS  Google Scholar 

  • Chen LW, Lai CH, Law HY, Yung KKL, Chan YS (2003) Quantitative study of the coexpression of Fos and N-methyl-d-aspartate (NMDA) receptor subunits in otolith-related vestibular nuclear neurons of rats. J Comp Neurol 460:292–301

    PubMed  CAS  Google Scholar 

  • Clarac F, Vinay L, Cazalets JR, Fady JC, Jamon M (1998) Role of gravity in the development of posture and locomotion in the neonatal rat. Brain Res Rev 28:35–43

    CAS  PubMed  Google Scholar 

  • Cohen B, Suzuki JL, Raphan T (1983) Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions. Brain Res 276:159–164

    PubMed  CAS  Google Scholar 

  • Curthoys IS (1979) The development of function of horizontal semicircular canal primary neurons in the rat. Brain Res 167:41–52

    PubMed  CAS  Google Scholar 

  • Curthoys IS (1982) Postnatal developmental changes in the response of rat primary horizontal semicircular canal neurons to sinusoidal angular accelerations. Exp Brain Res 47:295–300

    PubMed  CAS  Google Scholar 

  • Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13:27–30

    PubMed  CAS  Google Scholar 

  • Curthoys IS, Black RA, Goldberg JM, Fernández C (1995) New representations of otolithic primary afferent spatial tuning a re-processing of the Fernández & Goldberg (1976) data. Acta Otolaryngol Suppl 520:427–429

    PubMed  Google Scholar 

  • Curthoys IS, Betts GA, Burgess AM, MacDougall HG, Cartwright AD, Halmagyi GM (1999) The planes of the utricular and saccular maculae of the guinea pig. Ann NY Acad Sci 871:27–34

    PubMed  CAS  Google Scholar 

  • Darlington CL, Smith PF (1989) The effects of N-methyl-d-aspartate antagonists on the development of vestibular compensation in the guinea pig. Eur J Pharmacol 174:273–278

    PubMed  CAS  Google Scholar 

  • Darlot C, Denise P, Droulez J, Cohen B, Berthoz A (1988) Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73:91–105

    PubMed  CAS  Google Scholar 

  • Dechesne C, Mbiene JP, Sans A (1986) Postnatal development of vestibular receptor surfaces in the rat. Acta Otolaryngol 101:11–18

    PubMed  CAS  Google Scholar 

  • Denise P, Darlot C, Ignatiew-Charles P, Toupet M (1996) Unilateral peripheral semicircular canal lesion and off-vertical axis rotation. Acta Otolaryngol 116:361–367

    PubMed  CAS  Google Scholar 

  • Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88:3518–3533

    PubMed  Google Scholar 

  • Dickman JD, Angelaki DE (2004) Dynamics of vestibular neurons during rotational motion in alert rhesus monkeys. Exp Brain Res 155:91–101

    PubMed  Google Scholar 

  • Dutia MB, Johnston AR (1998) Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurons. Exp Brain Res 118:148–154

    PubMed  CAS  Google Scholar 

  • Fernández C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force response relations. J Neurophysiol 74:428–436

    Google Scholar 

  • Furman JM, Schor RH, Schumann TL (1992) Off-vertical axis rotation: a test of the otolith-ocular reflex. Ann Otol Rhinol Laryngol 101:643–650

    PubMed  CAS  Google Scholar 

  • Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78:3083–3094

    PubMed  CAS  Google Scholar 

  • Geisler HC, Westerga A, Gramsbergen A (1993) Development of posture in the rat. Acta Neurobiol Exp 53:517–523

    CAS  Google Scholar 

  • Gliddon CM, Darlington CL, Smith PF (2005) GABAergic systems in the vestibular nucleus and their contribution to vestibular compensation. Prog Neurobiol 75:53–81

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790

    PubMed  CAS  Google Scholar 

  • Gottschalk W, Pozzo-Miller LD, Figurov A, Lu B (1998) Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. J Neurosci 18:6830–6839

    PubMed  CAS  Google Scholar 

  • Grassi S, Pettorossi VE (2001) Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol 64:527–553

    PubMed  CAS  Google Scholar 

  • Grassi S, Della Torre G, Capocchi G, Zampolini M, Pettorossi VE (1995) The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei. Brain Res 699:183–191

    PubMed  CAS  Google Scholar 

  • Guedry FE (1965) Orientation of the rotation-axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60:30–48

    PubMed  Google Scholar 

  • Haslwanter T, Jaeger R, Mayr S, Fetter M (2000) Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp Brain Res 134:96–106

    PubMed  CAS  Google Scholar 

  • Imagawa M, Isu N, Sasaki M, Endo K, Ikegami H, Uchino Y (1995) Axonal projections of utricular afferents to the vestibular nuclei and the abducens nucleus in cats. Neurosci Lett 186:87–90

    PubMed  CAS  Google Scholar 

  • Jiang B, Lai CH, Chan YS (2000) Neuronal properties of otolith-related lateral vestibular neurons in uvulo-nodular lesioned rats. In: Claussen CF, Haid CT, Hofferberth B (eds) Equilibrium research, clinical equilibriometry and modern treatment. Elsevier, Amsterdam, pp 49–54

    Google Scholar 

  • Karhunen E (1973) Postnatal development of the lateral vestibular nucleus (Deiters’ nucleus) of the rat. A light and electron microscopic study. Acta Otolaryngol Suppl 313:1–87

    PubMed  CAS  Google Scholar 

  • Kasper J, Schor RH, Wilson VJ (1988) Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 60:1753–1764

    PubMed  CAS  Google Scholar 

  • Kaufman GD, Anderson JH, Beitz AJ (1992) Fos-defined activity in rat brainstem following centripetal acceleration. J Neurosci 12:4489–4500

    PubMed  CAS  Google Scholar 

  • Kim MS, Jin BK, Chun SW, Lee MY, Lee SH, Kim JH, Park BR (1997) Role of vestibulocerebellar N-methyl-d-aspartate receptors for behavioral recovery following unilateral labyrinthectomy in rats. Neurosci Lett 222:171–174

    PubMed  CAS  Google Scholar 

  • King J, Zheng Y, Liu P, Darlington CL, Smith PF (2002) NMDA and AMPA receptor subunit protein expression in the rat vestibular nucleus following unilateral labyrinthectomy. Neuroreport 13:1541–1545

    PubMed  CAS  Google Scholar 

  • Kinney GA, Peterson BW, Slater NT (1994) The synaptic activation of N-methyl-d-aspartate receptors in the rat medial vestibular nucleus. J Neurophysiol 72:1588–1595

    PubMed  CAS  Google Scholar 

  • Knopfel T (1987) Evidence for N-methyl-d-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog. Brain Res 426:212–224

    PubMed  CAS  Google Scholar 

  • Kushiro K, Zakir M, Sato H, Ono S, Ogawa Y, Meng H, Zhang X, Uchino Y (2000) Saccular and utricular inputs to single vestibular neurons in cats. Exp Brain Res 131:406–415

    PubMed  CAS  Google Scholar 

  • Kushiro K, Dai M, Kunin M, Yakushin SB, Cohen B, Raphan T (2002) Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys. J Neurophysiol 88:2445–2462

    PubMed  Google Scholar 

  • Lacour M, Gustave Dit Duflo S, Gestreau C (2000) Fos expression in the rat brain after exposure to gravito-inertial force changes. Brain Res 861:333–344

    PubMed  Google Scholar 

  • Lai CH, Chan YS (1995) Properties of otolith-related vestibular nuclear neurons in response to bidirectional off-vertical axis rotation of the rat. Brain Res 693:39–50

    PubMed  CAS  Google Scholar 

  • Lai CH, Chan YS (1996) Spontaneous activity of otolith-related vestibular nuclear neurons in the decerebrate rat. Brain Res 739:322–329

    PubMed  CAS  Google Scholar 

  • Lai CH, Chan YS (2001) Spontaneous discharge and response characteristics of central otolith neurons of rats during postnatal development. Neuroscience 103:275–288

    PubMed  CAS  Google Scholar 

  • Lai CH, Chan YS (2004) Signaling capacity of peripheral and central otolith neurons in coding horizontal head movement in postnatal rats. J Vestib Res 14:262–263

    Google Scholar 

  • Lai CH, Tse YC, Shum DKY, Yung KKL, Chan YS (2004) Postnatal expression of Fos in otolith-related brainstem neurons of rats following off-vertical axis rotation. J Comp Neurol 470:282–296

    PubMed  Google Scholar 

  • Lai SK, Lai CH, Yung KKL, Shum DKY, Chan YS (2006) Maturation of otolith-related brainstem neurons in the detection of vertical linear acceleration in rats. Eur J Neurosci (in press)

  • Lewis MR, Phelan KD, Shinnick-Gallagher P, Gallagher JP (1989) Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons. Synapse 3:149–153

    PubMed  CAS  Google Scholar 

  • Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black IB (1998) BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Mol Brain Res 55:20–27

    CAS  PubMed  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor sybtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    PubMed  CAS  Google Scholar 

  • Manzoni D, Andre P, Pompeiano O (1995) Responses of Purkinje cells in the cerebellar anterior vermis to off-vertical axis rotation. Pflugers Arch 431:141–154

    PubMed  CAS  Google Scholar 

  • Marshburn TH, Kaufman GD, Purcell IM, Perachio AA (1997) Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation. J Comp Neurol 377:509–519

    Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618

    PubMed  CAS  Google Scholar 

  • Morgan J, Curran T (1991) Stimulus-transcription-coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    PubMed  CAS  Google Scholar 

  • Morris RJ, Beech JN, Heizmann CW (1988) Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalbumin immunohistochemistry. Neuroscience 27:571–596

    PubMed  CAS  Google Scholar 

  • Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA (2003) Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 466:31–47

    PubMed  Google Scholar 

  • Paige GD (1983) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. J Neurophysiol 49:152–168

    PubMed  CAS  Google Scholar 

  • Paige GD, Seidman SH (1999) Characteristics of the VOR in response to linear acceleration. Ann NY Acad Sci 871:123–135

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318:329–354

    PubMed  CAS  Google Scholar 

  • Petrosini L, Molinari M, Gremoli T (1990) Hemicerebellectomy and motor behaviour in rats. I. Development of motor function after neonatal lesion. Exp Brain Res 82:472–482

    PubMed  CAS  Google Scholar 

  • Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2:352–357

    PubMed  CAS  Google Scholar 

  • Ross MD (1988) Morphological evidence for parallel processing of information in rat macula. Acta Otolaryngol 106:213–218

    PubMed  CAS  Google Scholar 

  • Rusch A, Lysakowski A, Eatock RA (1998) Postnatal development of Type I and Type II hair cells in the mouse utricle: acquisition of voltage-gated conductance and differentiated morphology. J Neurosci 18:7487–7501

    PubMed  CAS  Google Scholar 

  • Sans N, Sans A, Raymond J (1997) Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Eur J Neurosci 9:2019–2034

    PubMed  CAS  Google Scholar 

  • Sans NA, Montcouquiol ME, Raymond J (2000) Postnatal developmental changes in AMPA and NMDA receptors in the rat vestibular nuclei. Dev Brain Res 123:41–52

    CAS  Google Scholar 

  • Sato H, Imagawa M, Kushiro K, Zakir M, Uchino Y (2000) Convergence of posterior semicircular canal and saccular inputs in single vestibular nuclei neurons in cats. Exp Brain Res 131:253–261

    PubMed  CAS  Google Scholar 

  • Schinder AF, Berninger B, Poo MM (2000) Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25:151–163

    PubMed  CAS  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    PubMed  CAS  Google Scholar 

  • Schor RH, Miller AD, Timerick SJB, Tomko DL (1985) Responses to head tilt in cat central vestibular neurons. I. Frequency dependence of neuronal response vectors. J Neurophysiol 53:1444–1452

    PubMed  CAS  Google Scholar 

  • Schor RH, Steinbacher BC, Yates BJ (1998) Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. J Vestib Res 8:107–116

    PubMed  CAS  Google Scholar 

  • Seemungal BM, Gresty MA, Bronstein AM (2001) The endocrine system, vertigo and balance. Curr Opin Neurol 14:27–34

    PubMed  CAS  Google Scholar 

  • Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M (1991) Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84:417–425

    Article  PubMed  CAS  Google Scholar 

  • Serafin M, Khateb A, de Waele C, Vidal PP, Muhlethaler M (1992) Medial vestibular nucleus in the guinea-pig: NMDA-induced oscillations. Exp Brain Res 88:187–192

    PubMed  CAS  Google Scholar 

  • Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE (2005) Sensory convergence solves a motion ambiguity problem. Curr Biol 15:1657–1662

    PubMed  CAS  Google Scholar 

  • Smith PF, Darlington CL, Yan Q, Dragunow M (1998) Unilateral vestibular deafferentation induces brain-derived neurotrophic factor (BDNF) protein expression in the guinea pig lateral but not medial vestibular nuclei. J Vestib Res 8:443–447

    PubMed  CAS  Google Scholar 

  • Straka H, Debler K, Dieringer N (1996) Size-related properties of vestibular afferent fibers in the frog: differential synaptic activation of N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors. Neuroscience 70:697–707

    PubMed  CAS  Google Scholar 

  • Straka H, Holler S, Goto F (2002) Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons. J Neurophysiol 88:2287–2301

    PubMed  CAS  Google Scholar 

  • Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB (2005) Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 76:349–392

    PubMed  CAS  Google Scholar 

  • Suen PC, Wu K, Levine ES, Mount HT, Xu JL, Lin SY, Black IB (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-d-aspartate receptor subunit 1. Proc Natl Acad Sci USA 94:8191–8195

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Tsumoto T, Kubo T (1994) N-Methyl-d-aspartate receptors contribute to afferent synaptic transmission in the medial vestibular nucleus of young rats. Brain Res 659:287–291

    PubMed  CAS  Google Scholar 

  • Uchino Y, Sato H, Kushiro K, Zakir M, Imagawa M, Ogawa Y, Katsuta M, Isu N (1999) Cross-striolar and commissural inhibition in the otolith system. Ann NY Acad Sci 871:162–172

    PubMed  CAS  Google Scholar 

  • Uchino Y, Sato H, Zakir M, Kushiro K, Imagawa M, Ogawa Y, Ono S, Meng H, Zhang X, Katsuta M, Isu N, Wilson VJ (2001) Commissural effects in the otolith system. Exp Brain Res 136:421–430

    PubMed  CAS  Google Scholar 

  • Uchino Y, Sasaki M, Sato H, Bai R, Kawamoto E (2005) Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 164:271–285

    PubMed  CAS  Google Scholar 

  • Vidal PP, Vibert N, Serafin M, Babalian A, Muhlethaler M, de Waele C (1999) Intrinsic physiological and pharmacological properties of central vestibular neurons. Adv Otorhinolaryngol 55:26–81

    PubMed  CAS  Google Scholar 

  • de Waele C, Vibert N, Baudrimont M, Vidal PP (1990) NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrinthectomized guinea pig. Exp Brain Res 81:125–133

    PubMed  Google Scholar 

  • de Waele C, Abitbol M, Chat M, Menini C, Mallet J, Vidal PP (1994) Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur J Neurosci 6:565–576

    PubMed  Google Scholar 

  • Wang XH, Poo MM (1997) Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron 19:825–835

    PubMed  CAS  Google Scholar 

  • Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B and NR2C subunit protein. J Neurochem 68:469–478

    Article  PubMed  CAS  Google Scholar 

  • Wiener-Vacher SR, Toupet F, Narcy P (1996) Canal and otolith vestibulo-ocular reflexes to vertical and off-vertical axis rotations in children learning to walk. Acta Otolaryngol 116:657–665

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Gacek RR, Uchino Y, Susswein AJ (1978) Properties of central vestibular neurons fired by stimulation of the saccular nerve. Brain Res 143:251–261

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Ikegami H, Schor RH, Thomson DB (1996) Tilt responses of neurons in the caudal descending nucleus of the decerebrate cats: influence of the caudal cerebellar vermis and of neck receptors. J Neurophysiol 75:1242–1249

    PubMed  CAS  Google Scholar 

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    PubMed  CAS  Google Scholar 

  • Xerri C, Barthelemy J, Harlay F, Borel L, Lacour M (1987) Neuronal coding of linear motion in the vestibular nuclei of the alert cat. I. Response characteristics to vertical otolith stimulation. Exp Brain Res 65:569–581

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Him A, Cameron SA, Dutia MB (2000) Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurons after unilateral labyrinthectomy. J Physiol 523:413–424

    PubMed  CAS  Google Scholar 

  • Yoshimura Y, Ohmura T, Komatsu Y (2003) Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex. J Neurosci 23:6557–6566

    PubMed  CAS  Google Scholar 

  • Zakir M, Kushiro K, Ogawa Y, Sato H, Uchino Y (2000) Convergence patterns of the posterior semicircular canal and utricular inputs in single vestibular neurons in cats. Exp Brain Res 132:139–148

    PubMed  CAS  Google Scholar 

  • Zhang H, Zakir M, Meng H, Sato H, Uchino Y (2001) Convergence of horizontal semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 140:1–11

    PubMed  CAS  Google Scholar 

  • Zhang FX, Lai CH, Lai SK, Shum DKY, Yung KKL, Chan YS (2003) Neurotrophin receptor immunostaining in the vestibular nuclei of rats. Neuroreport 14:851–855

    PubMed  CAS  Google Scholar 

  • Zhang FX, Lai CH, Tse YC, Shum DKY, Chan YS (2005) Expression of Trk receptors in otolith-related neurons in the vestibular nucleus of rats. Brain Res 1062:92–100

    PubMed  CAS  Google Scholar 

  • Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47:859–872

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The works of the authors’ laboratories were supported by grants of the Hong Kong Research Grants Council (HKU7270/02M, 7380/03M, 7370/04M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Shing Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, YS., Lai, CH. & Shum, D.KY. Spatial coding capacity of central otolith neurons. Exp Brain Res 173, 205–214 (2006). https://doi.org/10.1007/s00221-006-0491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0491-x

Keywords

Navigation