Skip to main content
Log in

Cortical short-term fatigue effects assessed via rhythmic brain–muscle coherence

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study is aimed at assessing the short-term effects of muscular fatigue on the sensorimotor areas organization in the left and right hemispheres. Magnetoencephalographic (MEG) and electromyographic (EMG) activities were simultaneously recorded during the execution of a non-fatiguing motor task, performed before and after a task known to induce muscle fatigue (Fatigue). Coherence between cerebral and muscular rhythms as well as cerebral and muscular rhythms spectral densities were estimated during this non-fatiguing task and at rest. The MEG–EMG coherence in the beta band (13–32 Hz) was higher after than before Fatigue. The background activity reduction during contraction with respect to rest (i.e. the cerebral reactivity) was less evident after than before Fatigue in the gamma (33–45 Hz) and beta bands. When differentiating subjects on the base of Fatigue endurance times, while a huge inter-subject variability was found, an evident intra-subject similarity was observed for left and right arms, suggesting that resistance to fatigue is more an individual ability than a motor skill differentiated for the dominant and non-dominant side. In conclusion, signs of a more selective neural recruitment, more coupled with muscular activity, appeared as short-term effects of muscular fatigue in primary sensorimotor cortical areas. Evidence suggested that the reduction of cortical recruitment and the increased cortico-muscular coupling are distinct mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen B, Westlund B, Krarup C (2003) Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation. J Physiol 551:345–356

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501:225–241

    Article  PubMed  CAS  Google Scholar 

  • Barbati G, Porcaro C, Zappasodi F, Rossini PM, Tecchio F (2004) Optimization of ICA approach for artifact identification and removal in MEG signals. Clin Neurophysiol 115:1220–1232

    Article  PubMed  Google Scholar 

  • Basmajian JV, De Luca CJ (1985) Muscle alive. Their function revealed by electromyography. Williams and Wilkins, Baltimore

    Google Scholar 

  • Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699

    Article  PubMed  CAS  Google Scholar 

  • Boska MD, Moussavi RS, Carson PJ, Weiner MW, Miller RG (1990) The metabolic basis of recovery after fatiguing exercise of human muscle. Neurology 40:240–244

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Marsden JF (2001) Cortical network resonance and motor activity in humans. Neuroscientist 7:518–527

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Salenius S, Rothwell JC, Hari R (1998) Cortical correlate of the Piper rhythm in humans. J Neurophysiol 80:2911–2917

    PubMed  CAS  Google Scholar 

  • Brown P, Farmer SF, Halliday DM, Marsden J, Rosenberg JR (1999) Coherent cortical and muscle discharge in cortical myoclonus. Brain 122:461–472

    Article  PubMed  Google Scholar 

  • Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489:917–924

    PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA, Mazzone P, Insola A, Pilato F, Saturno E, Dileone M, Rothwell JC (2003) Direct demonstration of reduction of the output of the human motor cortex induced by a fatiguing muscle contraction. Exp Brain Res 149:535–538

    PubMed  CAS  Google Scholar 

  • Duchateau J, Balestra C, Carpentier A, Hainaut K (2002) Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol 541:959–967

    Article  PubMed  CAS  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA, Enoka RM (1993) Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 460:549–572

    PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Gastaut H (1952) Etude electrocorticographique de la reactivite des rhythms rolandiques. Rev Neurol 87:176–182

    PubMed  CAS  Google Scholar 

  • Gerloff C, Richard J, Hadley J, Schulman A, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531

    Article  PubMed  Google Scholar 

  • Griffin L, Garland SJ, Ivanova T, Gossen ER (2001) Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans. J Physiol 535:929–936

    Article  PubMed  CAS  Google Scholar 

  • Gross DW, Gotman J (1999) Correlation of high-frequency oscillations with the sleep–wake cycle and cognitive activity in humans. Neuroscience 94:1005–1018

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Tass PA, Salenius S, Hari R, Freund H, Schnitzler A (2000) Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol 527:623–631

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth KE, Bongiovanni LG, Nordin M (1995) Reduced servo-control of fatigued human finger extensor and flexor muscles. J Physiol 485:865–872

    PubMed  CAS  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Kaukoranta E (1985) Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol 24:233–256

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20:44–49

    Article  PubMed  CAS  Google Scholar 

  • Kollmitzer J, Ebenbichler GR, Kopf A (1999) Reliability of surface electromyographic measurements. Clin Neurophysiol 110:725–734

    Article  PubMed  CAS  Google Scholar 

  • Kristeva R, Popa T, Chakarov V, Hummel S (2004) Cortico-muscular coupling in a patient with postural myoclonus. Neurosci Lett 366:259–263

    Article  PubMed  CAS  Google Scholar 

  • Kristeva-Feige R, Fritsch C, Timmer J, Lucking CH (2002) Effects of attention and precision of exerted force on beta range EEG–EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113:124–131

    Article  PubMed  Google Scholar 

  • Lentz M, Nielsen JF (2002) Post-exercise facilitation and depression of M wave and motor evoked potentials in healthy subjects. Clin Neurophysiol 113:1092–1098

    Article  PubMed  Google Scholar 

  • Marsden CD, Meadows JC, Merton PA (1976) Fatigue in human muscle in relation to the number and frequency of motor impulses. J Physiol 258:94P–95P

    PubMed  CAS  Google Scholar 

  • Meador KJ, Ray PG, Echauz JR, Lo Ring DW, Vachtsevanos GJ (2002) Gamma coherence and conscious perception. Neurology 59:847–854

    PubMed  CAS  Google Scholar 

  • Murthy VN, Fetz EE (1996) Synchronisation of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 76:3968–3982

    PubMed  CAS  Google Scholar 

  • Niedermeyer E (1999) The normal EEG of the waking adult. In: Niedermeyer E, Lopes Da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields, 4th edn. Williams and Wilkins, Baltimore, pp 149–173

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pesenti A, Priori A, Scarlato G, Barbieri S (2001) Transient improvement induced by motor fatigue in focal occupational dystonia: the handgrip test. Mov Disord 16:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  PubMed  CAS  Google Scholar 

  • Piper HE (1907) Uber den willkurlichen Muskeltetanus. Pflugers Arch Gesamte Physiol Menschen Tiere 119:301–338

    Article  Google Scholar 

  • Piper HE (1912) Elektrophysiologie menschlicher Muskeln. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pitcher JB, Miles TS (2002) Alterations in corticospinal excitability with imposed vs. voluntary fatigue in human hand muscles. J Appl Physiol 92:2131–2138

    PubMed  Google Scholar 

  • Rossi S, Tecchio F, Pasqualetti P, Ulivelli M, Pizzella V, Romani GL, Passero S, Battistini N, Rossini PM (2002) Somatosensory processing during movement observation in humans. Clin Neurophysiol 113:16–24

    Article  PubMed  CAS  Google Scholar 

  • Samii A, Wassermann EM, Ikoma K, Mercuri B, Hallett M (1996) Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology 46:1376–1382

    PubMed  CAS  Google Scholar 

  • Starr A, Scalise A, Gordon R, Michalewski HJ, Caramia MD (2000) Motor cortex excitability in chronic fatigue syndrome. Clin Neurophysiol 111:2025–2031

    Article  PubMed  CAS  Google Scholar 

  • Tecchio F, Rossini PM, Pizzella V, Cassetta E, Romani GL (1997) Spatial properties and interhemispheric differences of the sensory hand cortical representation: a neuromagnetic study. Brain Res 767:100–108

    Article  PubMed  CAS  Google Scholar 

  • Tecchio F, Babiloni C, Zappasodi F, Vecchio F, Pizzella V, Romani GL, Rossini PM (2003) Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields. Brain Res 986:63–70

    Article  PubMed  CAS  Google Scholar 

  • Tecchio F, De Lucia M, Salustri C, Babiloni C, Bottaccio M, Montuori M, Pietronero L, Zappasodi F, Rossini PM (2004) District-related frequency specificity in hand cortical representation: dynamics of regional activation and intra-regional functional connectivity. Brain Res 1014:80–86

    Article  PubMed  CAS  Google Scholar 

  • Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126:199–212

    Article  PubMed  Google Scholar 

  • Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguiere F, Fiaschi A (2000) Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 123:42–50

    Google Scholar 

  • Tinazzi M, Fiaschi A, Frasson E, Fiorio M, Cortese F, Aglioti SM (2002) Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation. Mov Disord 17:333–338

    Article  PubMed  Google Scholar 

  • Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinas R (1996) Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology 46:1359–1370

    PubMed  CAS  Google Scholar 

  • Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74:219–227

    Article  PubMed  CAS  Google Scholar 

  • Vollestad NK, Sejersted OM, Bahr R, Woods JJ, Bigland-Ritchie B (1998) Motor drive and metabolic responses during repeated submaximal contractions in humans. J Appl Physiol 64:1421–1427

    Google Scholar 

  • Woods JJ, Furbush F, Bigland-Ritchie B (1987) Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. J Neurophysiol 58:125–137

    PubMed  CAS  Google Scholar 

  • Zijdewind I, Zwarts MJ, Kernell D (2000) Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Exp Brain Res 130:529–532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Patrizio Pasqualetti, Dr Antonio Oliviero, and Dr Claudio Bonato for scientific discussions; Prof. Gian Luca Romani and Vittorio Pizzella for continuous support. This work was partially supported by the CM/6/DML/2003 of the Istituto Superiore per la Prevenzione E Sicurezza sul Lavoro and by the European IST/FET Integrated Project NEUROBOTICS—the fusion of NEUROscience and roBOTICS, Project no. 001917 under the 6th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Tecchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tecchio, F., Porcaro, C., Zappasodi, F. et al. Cortical short-term fatigue effects assessed via rhythmic brain–muscle coherence. Exp Brain Res 174, 144–151 (2006). https://doi.org/10.1007/s00221-006-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0432-8

Keywords

Navigation