Skip to main content

Advertisement

Log in

Polysynaptic inputs to vestibular efferent neurons as revealed by viral transneuronal tracing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The Bartha strain of the alpha-herpes pseudorabies virus (PrV) was used as a retrograde transneuronal tracer to map synaptic inputs to the vestibular efferent neurons of the Mongolian gerbil, Meriones unguiculatus. Although previous experiments have shown that vestibular efferent neurons respond to visual motion and somatosensory stimuli, the anatomic connections mediating those responses are unknown. PrV was injected unilaterally into the horizontal semicircular canal neuroepithelium of gerbils, where it was taken up by efferent axon terminals. The virus was then retrogradely transported to efferent cell bodies, replicated, and transported into synaptic endings projecting onto the efferent cells. Thirty animals were sacrificed at approximately 5-h increments between 75 and 105 h post-infection after determining that shorter time points had no central infection. Infected cells were visualized immunohistochemically. Temporal progression of neuronal infection was used to determine the nature of primary and higher order projections to the vestibular efferent neurons. Animals sacrificed at 80–94 h post-inoculation exhibited immunostaining in the dorsal and ventral group of vestibular efferent neurons, predominately on the contralateral side. Neurons within the medial, gigantocellular, and lateral reticular formations were among the first cells infected thereafter. At 95 h, additional virus-labeled cell groups included the solitary, area postrema, pontine reticular, prepositus, dorsal raphe, tegmental, the subcoeruleus nuclei, the nucleus of Darkschewitsch, and the inferior olivary beta and ventrolateral subnuclei. Analysis beyond 95 h revealed virus-infected neurons located in the vestibulo-cerebellar and motor cortices. Paraventricular, lateral, and posterior hypothalamic cells, as well as central amygdala cells, were also labeled. Spinal cord tissue exhibited no labeling in the intermediolateral cell column, but scattered cells were found in the central cervical nucleus. The results suggest functional associations among efferent feedback regulation of labyrinthine sensory input and both behavioral and autonomic systems, and support a closed-looped vestibular feedback model with additional open-loop polysynaptic inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balaban CD (1988) Distribution of inferior olivary projections to the vestibular nuclei of albino rabbits. Neuroscience 24:119–134

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD (1996) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system. Exp Brain Res 108:367–381

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (1997) Overview of the organization of the central autonomic network. In: Benarroch EE (ed) Central autonomic network: functional organization and clinical correlations. Futura Publishing, Armonk, pp 3–28

    Google Scholar 

  • Bernard JF (1987) Topographical organization of olivocerebellar and corticonuclear connections in the rat—an WGA-HRP study: I Lobules IX, X, and the flocculus. J Comp Neurol 263:241–258

    Article  PubMed  CAS  Google Scholar 

  • Billig I, Balaban CD (2004) Zonal organization of the vestibulo-cerebellum in the control of horizontal extraocular muscles using pseudorabies virus: I. Flocculus/ventral paraflocculus. Neuroscience 125(2):507–520

    Article  PubMed  CAS  Google Scholar 

  • Billig I, Balaban CD (2005) Zonal organization of the vestibulo-cerebellar pathways controlling the horizontal eye muscles using two recombinant strains of pseudorabies virus. Neuroscience 93(4):1920–1934

    Google Scholar 

  • Bolton PS, Goto T, Schor RH, Wilson VJ, Yamagata Y, Yates BJ (1992) Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes—role in vertical vestibulospinal reflexes of the decerebrate cat. J Neurophysiol 67:639–647

    PubMed  CAS  Google Scholar 

  • Boyle R, Highstein SM (1990) Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents. J Neurosci 10:1570–1582

    PubMed  CAS  Google Scholar 

  • Brideau AD, Card JP, Enquist LW (2000) Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system. J Virol 74:834–845

    Article  PubMed  CAS  Google Scholar 

  • Brittle EE, Reynolds AE, Enquist LW. (2004) Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 78(23):12951–12963

    Article  PubMed  CAS  Google Scholar 

  • Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409

    PubMed  CAS  Google Scholar 

  • Cano G, Sved AF, Rinaman L, Rabin BS, Card JP (2001) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 439:1–18

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Enquist LW (1994) The use of pseudorabies virus for definition of synaptically linked populations of neurons. In: Adolph KW (ed) Methods in molecular genetics. Academic, Orlando, pp 363–382

    Google Scholar 

  • Card JP, Rinaman L, Schwaber JS, Miselis RR, Whealy ME, Robbins AK, Enquist LW (1990) Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system. J Neurosci 10:1974–1994

    PubMed  CAS  Google Scholar 

  • Card JP, Whealy ME, Robbins AK, Moore RY, Enquist LW (1991) Two alpha-herpesvirus strains are transported differentially in the rodent visual system. Neuron 6:957–969

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Dubin JR, Whealy ME, Enquist LW (1995) Influence of infectious dose upon productive replication and transynaptic passage of pseudorabies virus in rat central nervous system. J Neurovirol 1:349–358

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Levitt P, Enquist LW (1998) Different patterns of neuronal infection after intracerebral injection of two strains of pseudorabies virus. J Virol 72:4434–4441

    PubMed  CAS  Google Scholar 

  • Caston J, Bricout-Berthout A (1982) Responses of afferent and efferent neurons to visual inputs in the vestibular nerve of the frog. Brain Res 240:141–145

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yang M, Miselis RR, Aston-Jones G (1999) Characterization of transsynaptic tracing with central application of pseudorabies virus. Brain Res 838:171–183

    Article  PubMed  CAS  Google Scholar 

  • Clark FM, Proudfit HK (1991) The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231–245

    Article  PubMed  CAS  Google Scholar 

  • Cordick N, Parker L, Ossenkopp KP (1999) Rotation-induced conditioned rejection in the taste reactivity test. Neuroreport 10:1557–1559

    Article  PubMed  CAS  Google Scholar 

  • Correia M, Perachio A, Dickman J (1992) Changes in monkey horizontal semicircular canal afferent responses after spaceflight. J Appl Physiol 73:112–120

    Google Scholar 

  • Dechesne C, Sans A (1980) Control of the vestibular nerve activity by the efferent system in the cat. Acta Otolaryngol 90:82–85

    Article  PubMed  CAS  Google Scholar 

  • Dickman JD, Correia MJ (1993) Bilateral communication between vestibular labyrinths in pigeons. Neuroscience 57(4):1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Enquist LW, Card JP (1996) Pseudorabies virus: a tool for tracing neuronal connections. In: Lowenstein PR, Enquist LW (eds) Protocols for gene transfer in neuroscience. Towards gene therapy of neurological disorders. Wiley, Chichester, pp 333–348

    Google Scholar 

  • Fox RA, Keil LC, Daunton NG, Crampton GH, Lucot J (1987) Vasopressin and motion sickness in cats. Aviat Space Environ Med 58:A143–A147

    PubMed  CAS  Google Scholar 

  • Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10:159–187

    Article  PubMed  CAS  Google Scholar 

  • Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stockh) 77:92–101

    Article  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025

    PubMed  CAS  Google Scholar 

  • Haroutunian V, Riccio DC, Gans DP (1976) Suppression of drinking following rotational stimulation as an index of motion sickness in the rat. Physiol Psychol 4:467–472

    Google Scholar 

  • Hartmann R, Klinke R (1980) Efferent activity in the goldfish vestibular nerve and its influence on afferent activity. Pflugers Arch Eur J Physiol 388:123–128

    Article  CAS  Google Scholar 

  • Highstein SM (1991) The central nervous system efferent control of the organs of balance and equilibrium. Neurosci Res 12:13–30

    Article  PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384

    PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243:309–325

    Article  PubMed  CAS  Google Scholar 

  • Holt JC, Lioudyno M, Guth PS (2003) A pharmacologically distinct nicotinic ACh receptor is found in a subset of frog semicircular canal hair cells. J Neurophysiol 90(3):1526–1536

    Article  PubMed  CAS  Google Scholar 

  • Holt JC, Xue JT, Brichta AM, Goldberg JM (2006) Transmission between Type II hair cells and bouton afferents in the turtle posterior crista. J Neurophysiol 95(1):428–452

    Article  PubMed  Google Scholar 

  • Horii A, Takeda N, Morita M, Kubo T, Matsunaga T (1993) Motion sickness induced by sinusoidal linear acceleration in rats. Acta Otolaryngol Suppl 501:31–33

    Article  PubMed  CAS  Google Scholar 

  • Horowitz SS, Blanchard J, Morin LP (2005) Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 487(2):127–146

    Article  PubMed  Google Scholar 

  • Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681

    PubMed  CAS  Google Scholar 

  • Kaufman GD, Mustari M, Miselis RM, Perachio AA (1996) Transneuronal pathways to the vestibulocerebellum. J Comp Neurol 370:501–523

    Article  PubMed  CAS  Google Scholar 

  • Kaufman GD, Shinder ME, Perachio AA (2000) Convergent properties of vestibular-related brain stem neurons in the gerbil. J Neurophysiol 83:1958–1971

    PubMed  CAS  Google Scholar 

  • Knapp AC, Enquist LW (1997) Pseudorabies virus recombinants expressing functional virulence determinants gE and gI from bovine herpesvirus 1.1. J Virol 71:2731–2739

    PubMed  CAS  Google Scholar 

  • Larsen PJ, Enquist LW, Card JP (1998) Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur J Neurosci 10:128–145

    Article  PubMed  CAS  Google Scholar 

  • Loewy AD, Bridgman PC, Mettenleiter TC (1991) Beta-galactosidase expressing recombinant pseudorabies virus for light and electron microscopic study of transneuronally labeled CNS neurons. Brain Res 555(2):346–352

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey RJ (1985) Appropriateness of kaolin consumption as an index of motion sickness in the rat. Physiol Behav 35:151–156

    Article  PubMed  CAS  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    PubMed  CAS  Google Scholar 

  • Marlinsky V, Plotnik M, Goldberg JM (2004) Efferent actions in the chinchilla vestibular labyrinth. J Assoc Res Otolaryngol 5:126–143

    Google Scholar 

  • Metts BA, Kaufman GD, Perachio AA (1997) Anatomical study of the inputs projecting to gerbil vestibular efferent neurons. Soc Neurosci Abstr, New Orleans, LA, 508.4

  • Mitchell D, Krusemark ML, Hafner D (1977) Pica: a species relevant behavioral assay of motion sickness in the rat. Physiol Behav 18:125–130

    Article  PubMed  CAS  Google Scholar 

  • Moore RJ, Vinsant S, McCauley AK, Kurukulasuriya NC, Godwin DW (2001) Transneuronal retrograde transport of attenuated pseudorabies viruses within central visual pathways. Vis Neurosci 18(4):633–640

    Article  PubMed  CAS  Google Scholar 

  • Mustari MJ, Fuchs AF, Kaneko CR, Robinson FR (1994) Anatomical connections of the primate pretectal nucleus of the optic tract. J Comp Neurol 349(1):111–128

    Article  PubMed  CAS  Google Scholar 

  • Nadelhaft I, Vera PL (1996) Neurons in the rat brain and spinal cord labeled after pseudorabies virus injected into the external urethral sphincter. J Comp Neurol 375:502–517

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  • Perachio AA, Kevetter GA (1989) Identification of vestibular efferent neurons in the gerbil: histochemical and retrograde labeling. Exp Brain Res 78:315–326

    Article  PubMed  CAS  Google Scholar 

  • Pickard GE, Smeraski CA, Christine CT, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated pseudorabies virus PrV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710

    PubMed  CAS  Google Scholar 

  • Plotnik M, Marlinski V, Goldberg JM (2002) Reflections of efferent activity in rotational responses of chinchilla vestibular afferents. J Neurophysiol 88:1234–1244

    PubMed  Google Scholar 

  • Plotnik M, Marlinski V, Goldberg JM (2005) Efferent-mediated fluctuations in vestibular-nerve discharge: a novel, positive-feedback mechanism of efferent control. J Assoc Res Otolaryngol 28:1–13 (Epub ahead of print)

    Google Scholar 

  • Pompeiano O (1998) Vasopressin in the locus coeruleus and dorsal pontine tegmentum affects posture and vestibulospinal reflexes. Prog Brain Res 119:537–554

    Article  PubMed  CAS  Google Scholar 

  • Purcell IM, Perachio AA (1997) Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J Neurophysiol 78:3234–3248

    PubMed  CAS  Google Scholar 

  • Rossi ML, Martini M (1991) Efferent control of posterior canal afferent receptor discharge in the frog labyrinth. Brain Res 555:123–134

    Article  PubMed  CAS  Google Scholar 

  • Rossi ML, Prigioni I, Valli P, Casella C (1980) Activation of the efferent system in the isolated frog labyrinth: effects on the afferent EPSPs and spike discharge recorded from single fibers of the posterior nerve. Brain Res 185:125–137

    Article  PubMed  CAS  Google Scholar 

  • Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284

    PubMed  CAS  Google Scholar 

  • Rotto-Percelay DM, Wheeler JG, Osorio FA, Platt KB, Loewy AD (1992) Transneuronal labeling of spinal interneurons and sympathetic preganglionic neurons after pseudorabies virus injections in the rat medial gastrocnemius muscle. Brain Res 574:291–306

    Article  PubMed  CAS  Google Scholar 

  • Sans A, Highstein SH (1984) New ultrastructural features in the vestibular labyrinth of the toadfish, Opsanus tau. Brain Res 308:191–195

    Article  PubMed  CAS  Google Scholar 

  • Saper CD (1999) Image is everything. J Comp Neurol 412:381–382

    Article  PubMed  CAS  Google Scholar 

  • Schramm LP, Strack AM, Platt KB, Loewy AD (1993) Peripheral and central pathways regulating the kidney: a study using pseudorabies virus. Brain Res 616:251–262

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DWF, Satoh K, Schwarz IE, Hu K (1987) Vestibular and cochlear efferent neurons in the rat’s brainstem. In: Graham MD, Kemink JL (eds) The vestibular system: neurophysiologic and clinical research. Raven, New York, NY, pp 643–649

    Google Scholar 

  • Stornetta RL, McQuiston TJ, Guyenet PG (2004) GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J Comp Neurol 479(3):257–270

    Article  PubMed  CAS  Google Scholar 

  • Strack AM (1994) Pseudorabies virus as a transneuronal tract tracing tool: specificity and applications to the sympathetic nervous system. Gene Ther 1:S11–S14

    PubMed  Google Scholar 

  • Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10:2139–2147

    PubMed  CAS  Google Scholar 

  • Tirabassi RS, Enquist LW (2000) Role of the pseudorabies virus gI cytoplasmic domain in neuroinvasion, virulence, and posttranslational N-linked glycosylation. J Virol 74:3505–3516

    Article  PubMed  CAS  Google Scholar 

  • Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol [A] 169:25–37

    CAS  Google Scholar 

  • Ugolini G (1995a) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol 356:457–480

    Article  CAS  Google Scholar 

  • Ugolini G (1995b) Transneuronal tracing with alpha-herpesviruses: a review of the methodology. In: Keplitt M, Loewy AD (eds) Viral vectors: gene therapy and neuroscience applications. Academic, New York, pp 293–331

    Google Scholar 

  • Ugolini G, Kuypers HG, Strick PL (1989) Transneuronal transfer of herpes virus from peripheral nerves to cortex and brainstem. Science 243:89–91

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359

    PubMed  CAS  Google Scholar 

  • Yates BJ, Goto T, Kerman I, Bolton PS (1993) Responses of caudal medullary raphe neurons to natural vestibular stimulation. J Neurophysiol 70:938–946

    PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD (1994) Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol 71:2087–2092

    PubMed  CAS  Google Scholar 

  • Yates BJ, Stocker SD (1998) Integration of somatic and visceral inputs by the brainstem: functional considerations. Exp Brain Res 119:269–275

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47:395–406

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Smail JA, Stocker SD, Card JP (1999) Transneuronal tracing of neural pathways controlling activity of diaphragm motoneurons in the ferret. Neuroscience 90:1501–1513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH DC-00385 and NASA NGT 2–52216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian A. Perachio.

Appendix

Appendix

Table 2

Table 2 Anatomical Abbreviation Used

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metts, B.A., Kaufman, G.D. & Perachio, A.A. Polysynaptic inputs to vestibular efferent neurons as revealed by viral transneuronal tracing. Exp Brain Res 172, 261–274 (2006). https://doi.org/10.1007/s00221-005-0328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0328-z

Keywords

Navigation