Skip to main content
Log in

Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Individuals with hemiparetic cerebral palsy (HCP) display deviant motor output, predominantly on one side of the body. The question pursued here is whether HCP participants have the ability to anticipate the forthcoming perceptual-motor demands of the goal of an action sequence. Such anticipatory planning was necessary to successfully perform the tasks that were studied. In experiment I, HCP participants had to grasp a hexagonal knob with their unimpaired hand by choosing one of five possible grasping patterns (free choice) and consequently rotate it 60°, 120°, or 180° clockwise or counterclockwise. HCP participants showed a large amount of task failures that were persistent throughout the task. These findings suggest a deficit in anticipatory planning. No such task failures were observed for the control group. In addition, the instructed degree of rotation had less effect on the selected grasping pattern for the HCP participants than for the controls. In experiment II, we investigated if HCP participants are prone to use context information that is directly available in the task, instead of planning the forthcoming perceptual-motor demands. To that aim, an arrow was inserted at one of the sides of the hexagon in a position that had no relevance for the action to be planned and executed. The location of this arrow significantly affected the grip selected in the HCP participants, but not in controls. Overall, the results suggest an anticipatory planning deficit in HCP participants that may be caused by an impairment at the motor imagery level. Consequently, as an alternative strategy, performance in HCP participants was predominantly based on information directly available in the task context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bear MF, Conners BW, Paradiso MA (2001) Neuroscience: exploring the brain, 2nd edn. Lippincott, Williams, & Wilkins, Philadelphia

    Google Scholar 

  • Chang J, Wu T, Wu W, Su F (2005) Kinematical measure for spastic reaching in children with cerebral palsy. Clin Biomech 20:381–388

    Article  Google Scholar 

  • Crammond DJ (1997) Motor imagery: never in your wildest dream. Trends Neurosci 20:54–57

    Article  PubMed  CAS  Google Scholar 

  • Cruickshank WM (1976) Cerebral palsy. Syracuse NY

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R et al (1994) Mapping motor representations with PET. Nature 371:600–602

    Article  PubMed  CAS  Google Scholar 

  • Duque J, Thonnard JL, Vandermeeren Y, Sébire G, Cosnard G, Olivier E (2003) Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia. Brain 126:732–747

    Article  PubMed  Google Scholar 

  • Eliasson AC, Gordon AM, Forssberg H (1991) Basic co-ordination of manipulative forces of children with cerebral palsy. Dev Med Child Neurol 33:661–670

    Article  PubMed  CAS  Google Scholar 

  • Eliasson AC, Gordon AM, Forssberg H (1992) Impaired anticipatory control of isometric forces during grasping by children with cerebral palsy. Dev Med Child Neurol 34:216–225

    Article  PubMed  CAS  Google Scholar 

  • Elsinger LE, Rosenbaum DA (2003) End posture selection in manual positioning: evidence for feedforward modeling based on a movement choice method. Exp Brain Res 152:499–509

    Article  PubMed  Google Scholar 

  • Forssberg H (1999) Neural control of human motor development. Cur Opin Neurobiol 9:676–682

    Article  CAS  Google Scholar 

  • Fuster JM (2000) Executive frontal functions. Exp Brain Res 133:66–70

    Article  PubMed  CAS  Google Scholar 

  • Ganis G, Keenan JP, Kosslyn SM, Pascual-Leone A (2000) Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cereb Cortex 10:175–180

    Article  PubMed  CAS  Google Scholar 

  • Johnson SH (2000) Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cognition 74:33–70

    Article  CAS  Google Scholar 

  • Johnson SH, Rotte M, Grafton ST, Hinrichs H, Gazzaniga MS. Heinze HJ (2002a) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17:1693–1704

    Article  CAS  Google Scholar 

  • Johnson SH, Spreh G, Saykin AS (2002b) Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. J Cogn Neurosci 14:842–852

    Article  Google Scholar 

  • Johnson-Frey SH, McCarty ME, Keen R (2004) Reaching beyond spatial perception: Effects of intended future actions on visually guided prehension. Vis Cogn 11:371–399

    Article  Google Scholar 

  • Kosslyn SM, DiGirolamo G, Thompson WL, Alpert NM (1998) Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology 35:151–161

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Petit L, Hollinger P, Pietrzyk U, Tzourio MB, Mazoyer B et al (1994) A positron emission tomograpgy study of oculomotor imagery. Neuroreport 5:921–924

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Cheyne D, Hollinger P, Gerschkager W, Lindinger G (1996) Electric and magnetic fields of the brain accompanying internal simulation of movement. Cogn Brain Res 3:125–129

    Article  CAS  Google Scholar 

  • Lange de FP, Kalkman JS, Bleijenberg G, Hagoort P, Werf van de SP, Meer van der JWM, Toni I (2004) Neural correlates of the chronic fatigue syndrome—an fMRI study. Brain 127:1948–1957

    Article  PubMed  Google Scholar 

  • Latash ML, Anson JG (1996) What are “normal movements” in atypical populations? Behav Brain Sci 19:55–106

    Article  Google Scholar 

  • Lin KC, Tang FT, Chen HC, Wu CY, Shen IH (2001) Effects of contextual constraints on reaching performance in adults without disabilities: A kinematic study. Occup Ther J Res 21:168–184

    Google Scholar 

  • Marteniuk RG, MacKenzie CL, Jeannerod M, Athenes S, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychology 41:365–378

    CAS  Google Scholar 

  • Mathiowetz V, Wade MG (1995) Task constraints and functional motor performance of individuals with and without multiple sclerosis. Ecol Psychol 7:99–123

    Article  Google Scholar 

  • Mathiowetz V, Volland G, Kashman N, Weber K (1985) Adult norms for the box and block test for manual dexterity. Am J Occup Ther 39:386–391

    PubMed  CAS  Google Scholar 

  • Mutsaarts M, Steenbergen B, Meulenbroek RGJ (2004) Assessing the rigidity of the grasping movements of three adolescents with spastic hemiparesis due to a cerebral palsy. Exp Brain Res 156:293–304

    Article  PubMed  Google Scholar 

  • Mutsaarts M, Steenbergen B, Bekkering H (2005) Anticipatory planning of movement sequences in hemiparetic cerebral palsy. Motor Control 9(4):435–454

    Google Scholar 

  • Parsons LM (2003) Superior parietal cortices and varieties of mental rotation. Trends Cogn Sci 7:515–517

    Article  PubMed  Google Scholar 

  • Parsons LM, Fox PT (1998) The neural basis of the implicit movements used in recognizing hand shape. Cogn Neuropsychol 15:583–615

    Google Scholar 

  • Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54–58

    Article  PubMed  CAS  Google Scholar 

  • Platz T, Mauritz KH (1995) Human motor planning, motor programming, and use of new task-relevant information with different apraxic syndromes. Eur J Neurosci 7:1536–1547

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baaraldi P, Zuiani C et al. (1996). Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698

    PubMed  CAS  Google Scholar 

  • Rabbitt PMA (1966a) Errors and error correction in choice-response tasks. J Exp Psychol 71:264–272

    Article  CAS  Google Scholar 

  • Rabbitt PMA (1966b) Error correction time without external error signals. Nature 212:438

    Article  CAS  Google Scholar 

  • Rabbitt PMA (1967) Time to detect errors as a function of factors affecting choice-response time. Acta Psychol 27:131–142

    Article  CAS  Google Scholar 

  • Rabbitt PMA (1968) Three kinds of error-signalling responses in a serial choice task. Q J Exp Psychol 20:179–188

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Binder JR, Bandettini PA, Hemmeke TA, Yetkin FZ, Jesmanowixz A et al (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends in Neurosci 21:188–194

    Article  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154

    Article  PubMed  CAS  Google Scholar 

  • Roon van D, Steenbergen B, Meulenbroek RGJ (2004) Trunk recruitment during spoon use in tetraparetic cerebral palsy. Exp Brain Res 155:186–195

    Article  PubMed  Google Scholar 

  • Rosenbaum DA, Jorgensen MJ (1992) Planning macroscopic aspects of manual control. Hum Mov Sci 11:61–69

    Article  Google Scholar 

  • Rosenbaum DA, Engelbrecht SE, Bushe MM, Loukopoulos LD (1993a) A model for reaching control. Acta Psychologica 82:237–250

    Article  CAS  Google Scholar 

  • Rosenbaum DA, Vaughan J, Jorgensen MJ, Barnes HJ, Stewart E (1993b) Plans for object manipulation. In: Meyer DE, Kornblum S (eds) Attention and performance XIV: synergies in experimental psychology, artificial intelligence, and cognitive neuroscience. MIT Press, Cambridge, pp 803–820

    Google Scholar 

  • Short MW, Cauraugh JH (1997) Planning macroscopic aspects of manual control: end-state comfort and point-of-change effects. Acta Psychologica 96:133–147

    Article  PubMed  CAS  Google Scholar 

  • Short MW, Cauraugh JH (1999) Precision hypothesis and the end-state comfort effect. Acta Psychologica 100:243–252

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel JR (2001) Motor and visual imagery as two complementary but neurally dissociable mental processes. J Cogn Neurosci 13:910–919

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen B, Kamp van der J (2004) Control of prehension in hemiparetic cerebral palsy: Similarities and differences between the ipsi- and contra-lesional sides of the body. Dev Med Child Neurol 46:325–332

    Article  PubMed  Google Scholar 

  • Steenbergen B, Hulstijn W, Dortmans S (2000a) Constraints on grip selection in cerebral palsy: minimizing discomfort. Exp Brain Res 134:385–397

    Article  CAS  Google Scholar 

  • Steenbergen B, Thiel van E, Hulstijn W, Meulenbroek RGJ (2000b) The coordination of reaching and grasping in spastic hemiparesis. Hum Mov Sci 19:75–105

    Article  Google Scholar 

  • Steenbergen B, Meulenbroek RGJ, Rosenbaum DA (2004) Constraints on grip selection in hemiparetic cerebral palsy: effects of lesional side, end-point accuracy, and context. Cogn Brain Res 19:145–159

    Article  Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Sibersweig D, Ceballos-Baumann AO, Frith CD et al. (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 72:373–386

    Google Scholar 

  • Thiel van E, Meulenbroek RGJ, Hulstijn W, Steenbergen B (2000) Kinematics of fast hemiparetic aiming movements towards stationary and moving targets. Exp Brain Res 132:230–242

    Article  PubMed  Google Scholar 

  • Thiel van E, Meulenbroek RGJ, Smeets JBJ, Hulstijn W (2002) Fast adjustments of ongoing movements in hemiparetic cerebral palsy. Neuropsychologia 40:16–27

    Article  PubMed  Google Scholar 

  • Tomasino B, Rumiati RL (2004) Effects of strategies on mental rotation and hemispheric lateralization: Neuropsychological evidence. J Cogn Neurosci 16:878–888

    Article  PubMed  Google Scholar 

  • Tomasino B, Rumiati RI, Umilta CA (2003) Selective deficit of motor imagery as tapped by a left-right decision of visually presented hands. Brain and Cogn 53:376–380

    Article  Google Scholar 

  • Trombly CA (1992) Deficits of reaching in subjects with left hemiparesis: a pilot study. Am J Occup Ther 46:887–897

    PubMed  CAS  Google Scholar 

  • Trombly CA (1993) Observations of improvement of reaching in five subjects with hemiparesis. J Neurol Neurosurg Psychiatry 56:40–45

    Article  PubMed  CAS  Google Scholar 

  • Trombly CA, Wu CY (1998) Effect of rehabilitation tasks on organization of movement after stroke. Am J Occup Ther 53:333–344

    Google Scholar 

  • Utley A, Sugden DA (1998) Interlimb coupling in children with hemiplegic cerebral palsy during reaching and grasping at speed. Dev Med Child Neurol 40:396–404

    PubMed  CAS  Google Scholar 

  • Volman MJM, Wijnroks A, Vermeer A (2002) Effect of task context on reaching performance in children with spastic hemipareis. Clin Rehab 16:684–692

    Article  CAS  Google Scholar 

  • Wechsler D (1974) Manual for the Wechsler intelligence scale for children-Revised. Psychological Corp, San Antonio

    Google Scholar 

  • Weel van der FR, Meer van der LH, Lee DN (1991) Effects of task goal on movement control in cerebral palsy: implications for assessment and therapy. Dev Med Child Neurol 33:419–426

    Article  PubMed  Google Scholar 

  • Wolbert T, Weiller C, Büchel C (2003) Contralateral coding of imagined body parts in the superior parietal lobe. Cereb Cortex 13:392–399

    Article  Google Scholar 

  • Wu CY, Trombly CA, Lin K (1994) The relationship between occupational form and occupational performance: A kinematic perspective. Am J Occup Ther 48:679–687

    PubMed  CAS  Google Scholar 

  • Wu CY, Trombly CA, Lin K, Tickle-Degnen L (1998) Effects of object affordances on reaching performance in persons with and without cerebrovascular accident. Am J Occup Ther 52:447–456

    PubMed  CAS  Google Scholar 

  • Wu CY, Trombly CA, Lin K, Tickle-Degnen L (2000) A kinematic study of contextual effects on reaching performance in persons with and without stroke: influences of object availability. Am J Occup Ther 81:95–101

    CAS  Google Scholar 

Download references

Acknowledgements

We thank those who kindly volunteered to participate in the study. This research was supported by a grant awarded by The Netherlands Organization for Scientific Research (NWO) to the second author for the research project ‘Adaptation in movement disorder’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Mutsaarts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutsaarts, M., Steenbergen, B. & Bekkering, H. Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Exp Brain Res 172, 151–162 (2006). https://doi.org/10.1007/s00221-005-0327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0327-0

Keywords

Navigation