Skip to main content
Log in

Transneuronal tracing of vestibulo-trigeminal pathways innervating the masseter muscle in the rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies reported that the activity of trigeminal motoneurons innervating masseter muscles is modulated by vestibular inputs. We performed the present study to provide an anatomical substrate for these physiological observations. The transynaptic retrograde tracer pseudorabies virus-Bartha was injected into multiple sites of the lower third of the superficial layer of the masseter muscle in rats, a subset of which underwent a sympathectomy prior to virus injections, and the animals were euthanized 24–120 h later. Labeled masseteric motoneurons were first found in the ipsilateral trigeminal motor nucleus following a 24-h postinoculation period; subsequent to 72-h survival times, the number of infected motoneurons increased, and at ≥96 h many of these cells showed signs of cytopathic changes. Following 72-h survival times, a few transynaptically labeled neurons appeared bilaterally in the medial vestibular nucleus (MVe) and the caudal prepositus hypoglossi (PH) and in the ipsilateral spinal vestibular nucleus (SpVe). At survival times of 96–120 h, labeled neurons were consistently observed bilaterally in all vestibular nuclei (VN), although the highest concentration of infected cells was located in the caudal part of the MVe, the SpVe, and the caudal portion of PH. The distribution and density of labeling in the VN and PH were similar in sympathectomized and nonsympathectomized rats. These anatomical data provide the first direct evidence that neurons in the VN and PH project bilaterally to populations of motoneurons innervating the lower third of the superficial layer of the masseter muscle. The MVe, PH, and SpVe appear to play a predominant integrative role in producing vestibulo-trigeminal responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aston-Jones G, Card P (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103:51–61

    Article  PubMed  CAS  Google Scholar 

  • Bartha A (1961) Experimental reduction of virulence of Aujezky’s disease. Magy Allatorov Lapja 16:42–45

    Google Scholar 

  • Buisseret-Delmas C, Compoint C, Delfini C, Buisseret P (1999) Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol 409:153–168

    Article  PubMed  CAS  Google Scholar 

  • Card JP (1998) Practical considerations for the use of pseudorabies virus in transneuronal studies of neural circuitry. Neurosci Biobehav Rev 22:685–694

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Whealy ME, Robbins AK, Enquist LW (1992) Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66:3032–3041

    PubMed  CAS  Google Scholar 

  • de Olmos J, Hardy H, Heimer L (1978) The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J Comp Neurol 181:213–244

    Article  PubMed  Google Scholar 

  • Deriu F, Podda MV, Chessa G, Tolu E (1999) Trigeminal integration of vestibular and forelimb nerve inputs. Arch Ital Biol 137:63–73

    PubMed  CAS  Google Scholar 

  • Deriu F, Podda MV, Milia M, Chessa G, Sau G, Pastorino M, Aiello I, Tolu E (2000) Masseter muscle activity during vestibular stimulation in man. Arch Ital Biol 138:205–215

    PubMed  CAS  Google Scholar 

  • Deriu F, Tolu E, JC Rothwell (2003) A short latency vestibulomasseteric reflex evoked by electrical stimulation over the mastoid in healthy humans. J Physiol 553.1:267–279

    Article  CAS  Google Scholar 

  • Deriu F, Tolu E, JC Rothwell (2005) A sound-evoked vestibulomasseteric reflex in healthy humans. J Neurophysiol 93:2739–2751

    Article  PubMed  Google Scholar 

  • Donga R, Lund JP (1991) Discharge patterns of trigeminal commissural last-order interneurons during fictive mastication in the rabbit. J Neurophysiol 66:1564–1578

    PubMed  CAS  Google Scholar 

  • Eriksson PO (1982) Muscle-fibre composition of the human mandibular locomotor system. Enzyme-histochemical and morphological characteristics of functionally different parts. Swed Dent J 12:1–44

    Google Scholar 

  • Eriksson PO, Thornell LE (1983) Histochemical and morphological muscle-fibre characteristics of the human masseter, the medial pterygoid and the temporal muscles. Arch Oral Biol 28:781–795

    Article  PubMed  CAS  Google Scholar 

  • Fay RA, Norgren R (1997) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus I. Masticatory muscle motor systems. Brain Res Rev 25:255–275

    Article  PubMed  CAS  Google Scholar 

  • Godeaux E, Desmedt JE (1975) Human masseter muscle: H-and tendon reflexes. Arch Neurol 32:229–234

    PubMed  Google Scholar 

  • Herring SW, Grimm AF, Grimm BR (1979) Functional heterogeneity in a multipinnate muscle. Am J Anat 154:563–576

    Article  PubMed  CAS  Google Scholar 

  • Hickenbottom RS, Bishop B, Moriarty MT (1985) Effects of whole body rotation on masseteric motoneuron excitability. Exp Neurol 89:442–453

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter CP, Card JP, Olson L (2005) A spinal cord pathway connecting primary afferents to the segmental sympathetic outflow system. Exp Neurol 194:128–138

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  • Inoue T, Masuda Y, Nagashima T, Yoshikawa K, Morimoto T (1992) Properties of a rhythmically active reticular neurons around the trigeminal motor nucleus during fictive mastication in the rat. Neurosci Res 14:275–294

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Nozawa-Inoue K, Donga R, Yamada Y (2002) Convergence of selected inputs from sensory afferents to trigeminal premotor neurons with possible projections to masseter motoneurons in the rabbit. Brain Res 957:183–191

    Article  PubMed  CAS  Google Scholar 

  • Kamogawa H, Manabe K, Kondo M, Naito K (1994) Supra- and juxtatrigeminal inhibitory premotor neurons with bifurcating axons projecting to masseter motoneurons on both sides. Brain Res 639:85–92

    Article  PubMed  CAS  Google Scholar 

  • Kevetter G, Leonard R, Newlands S, Perachio A (2004) Central distribution of vestibular afferents that innervate the anterior or lateral semicircular canal in the mongolian gerbil. J Vestib Res 14:1–15

    PubMed  Google Scholar 

  • Kolta A, Westberg KG, Lund JP (2000) Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J Chem Neuroanat 19:175–195

    Article  PubMed  CAS  Google Scholar 

  • Li YQ, Takada M, Kaneko T, Mizuno N (1995) Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles-differential distribution in the lower brainstem of the rat. J Comp Neurol 356:563–579

    Article  PubMed  CAS  Google Scholar 

  • Lovick TA, Wolstencroft JH (1983) Projections from brainstem nuclei to the spinal trigeminal tractus in the cat. Neuroscience 9:411–420

    Article  PubMed  CAS  Google Scholar 

  • Marfurt CF, Raichert DM (1991) Trigeminal primary afferent projections to “non-trigeminal” areas of the rat central nervous system. J Comp Neurol 196:173–187

    Google Scholar 

  • McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. Prog Brain Res 50:653–665

    PubMed  CAS  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    PubMed  CAS  Google Scholar 

  • Mizuno N, Konishi A, Sato M (1975) Localization of masticatory motoneurons in the cat and rat by means of retrograde axonal transport of horseradish peroxidase. J Comp Neurol 164:105–115

    Article  PubMed  CAS  Google Scholar 

  • Mizuno N, Yasui Y, Nomura S, Itoh K, Konishi A, Takada M, Kudo M (1983) A light and electron microscopic study of premotor neurons for the trigeminal motor nucleus. J Comp Neurol 215:290–298

    Article  PubMed  CAS  Google Scholar 

  • Nozaki S, Iriki A, Nakamura Y (1986a) Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J Neurophysiol 55:826–845

    CAS  Google Scholar 

  • Nozaki S, Iriki A, Nakamura Y (1986b) Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J Neurophysiol 55:806–825

    CAS  Google Scholar 

  • Olsson KA, Landgren S, Westberg KG (1986) Location of, and peripheral convergence on, the interneuron in the disynaptic path from the coronal gyrus of the cerebral cortex to the trigeminal motoneurons in the cat. Exp Brain Res 65:83–97

    Article  PubMed  CAS  Google Scholar 

  • Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rats studied by anterograde transport of horseradish peroxidase conjugated to wheat germ-agglutinin. J Comp Neurol 268:91–108

    Article  PubMed  CAS  Google Scholar 

  • Rubertone JA, Mehler WR, Voogd J (1995) The vestibular nuclear complex. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 773–796

    Google Scholar 

  • Sessle BJ (1977) Modulation of alpha and gamma trigeminal motoneurons by various peripheral stimuli. Exp Neurol 54:323–339

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga Y, Hirose Y, Yoshida A, Fukami H, Honma S, Bae YC (2000) Quantitative ultrastructure of physiologically identified premotoneuron terminals in the trigeminal motor nucleus in the cat. J Comp Neurol 426:13–30

    Article  PubMed  CAS  Google Scholar 

  • Stålberg E, Eriksson PO, Antoni L, Thornell LE (1986) Electrophysiological study of size and fibre distribution of motor units in the human masseter and temporal muscles. Arch Oral Biol 31:521–527

    Article  PubMed  Google Scholar 

  • Strick PL, Card JP (1992) Transneuronal mapping of neural circuits with alpha herpes viruses. In: Bolam JP (ed) Experimental neuroanatomy: a practical approach. Oxford University Press, Oxford, pp 81–101

    Google Scholar 

  • Tolu E, Pugliatti M (1993) The vestibular system modulates masseter muscle activity. J Vest Res 3:163–171

    CAS  Google Scholar 

  • Tolu E, Pugliatti M, Lacana P, Chessa G, Caria MA, Simula ME (1994) Vestibular and somatosensory afferents modulate masseter muscle activity. J Vest Res 4:303–311

    CAS  Google Scholar 

  • Tolu E, Caria MA, Chessa G, Melis F, Simula ME, Podda MV, Solinas A, Deriu F (1996) Trigeminal motoneurone responses to vestibular stimulation in the guinea pig. Arch Ital Biol 134:141–151

    PubMed  CAS  Google Scholar 

  • Travers JB, Norgren R (1983) Afferent projection to the oral motor nuclei in the rat. J Comp Neurol 220:280–298

    Article  PubMed  CAS  Google Scholar 

  • Valla J, Delfini C, Diagne M, Pinganaud G, Buisseret P, Buisseret-Delmas C (2003) Vestibulotrigeminal and vestibulospinal projections in rats: retrograde tracing coupled to glutamic acid decarboxylase immunoreactivity. Neurosci Lett 340:225–228

    Article  PubMed  CAS  Google Scholar 

  • Vornov JJ, Sutin J (1983) Brainstem projections to the normal and noradrenergically hyperinnervated trigeminal motor nucleus. J Comp Neurol 214:198–208

    Article  PubMed  CAS  Google Scholar 

  • Walberg F, Dietrics E, Nordby T (1985) On the projections from the vestibular and peryhypoglossal nuclei to the spinal trigeminal and lateral nuclei in the cat. Brain Res 133:123–130

    Article  Google Scholar 

  • Weijs WA (1996) Functional somatotopic organization of motoneurons supplying the rabbit masseter muscle. J Comp Neurol 364:279–289

    Article  PubMed  CAS  Google Scholar 

  • Weijs WA, Jüch PJW, Kwa SHS, Korfage JAM (1993) Motor unit territories and fiber types in rabbit masseter muscle. J Dent Res 72:1491–1498

    PubMed  CAS  Google Scholar 

  • Westberg KG, Olsson KA (1991) Integration in trigeminal premotor interneurones in the cat. Functional characteristic of neurones in the subnucleus of the oral nucleus of the spinal trigeminal tract. Exp Brain Res 84:323–339

    Article  Google Scholar 

  • Westberg KG, Sandstrom G, Olsson KA (1995) Integration in trigeminal premotor interneurones in the cat. 3. Input characteristics and synaptic actions of neurons in subnucleus-gamma of the oral nucleus of the spinal trigeminal tract with a projection to the masseteric motoneurone subnucleus. Exp Brain Res 104:449–461

    Article  PubMed  CAS  Google Scholar 

  • Westberg KG, Clavelou P, Sandstrom G, Lund JP (1998) Evidence that trigeminal brainstem interneurons form subpopulations to produce different forms of mastication in the rabbit. J Neurosci 18:6466–6479

    PubMed  CAS  Google Scholar 

  • Widmer CG, Lund JP (1989) Evidence that peaks in EMG averages can sometimes be caused by inhibition of motoneurons. J Neurol 62:212–219

    CAS  Google Scholar 

  • Widmer CG, Klugman DK, English AW (1997) Anatomical partitioning and nerve branching patterns in the adult rabbit masseter. Acta Anat 159:222–232

    Article  PubMed  CAS  Google Scholar 

  • Widmer CG, Carrasco DI, English AW (2003) Differential activation of neuromuscular compartments in the rabbit masseter muscle during different oral behaviors. Exp Brain Res 150:297–307

    PubMed  CAS  Google Scholar 

  • Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Pseudorabies virus and anti-pseudorabies virus antibodies were the generous gift of Dr. Lynn Enquist of Princeton University. The authors thank Lucy Cotter, Jen-Shew Yen, and Bob Sabol for valuable technical assistance in completing this study. Funding was provided by Grants R01-DC003732 and R03-DC005911 from the National Institutes of Health (USA), as well as Ministero dell’ Università della Ricerca Scientifica e Tecnologica and Regione Autonoma della Sardegna (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaconi, E., Deriu, F., Tolu, E. et al. Transneuronal tracing of vestibulo-trigeminal pathways innervating the masseter muscle in the rat. Exp Brain Res 171, 330–339 (2006). https://doi.org/10.1007/s00221-005-0275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0275-8

Keywords

Navigation