Skip to main content
Log in

Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Current behavioural theories consider that during motor learning, an effector-independent memory representation of the acquired skill is built up. Using a transfer paradigm, we addressed the nature of the memory representation for a 2:1 multifrequency co-ordination task, requiring, for example, the left arm to cycle twice as fast as the right. After learning this 2:1 pattern, transfer to its converse pattern (i.e., the right arm cycles twice as fast as the left) revealed powerful evidence for negative transfer. The converse task arrangement revealed similar effects. These observations suggest a reconsideration of current viewpoints on movement representations, which emphasize effector independence. Based on the present findings, we propose a new model of motor memory, consisting of an abstract, effector-independent and an effector-specific layer. The abstract code is hypothesized to represent general spatiotemporal movement features, whereas the specific representation refers to effector-related movement commands. This concept is consistent with recent neuroscientific evidence in animal and human species, and invites a reconsideration of current behavioural theories of motor learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bapi RS, Doya K, Harner AM (2000) Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Exp Brain Res 132:149–162

    Article  PubMed  CAS  Google Scholar 

  • Brasil-Neto JP, Valls-Sole J, Pascual-Leone A, Cammarota A, Amassian VE, Cracco R, Maccabee P, Cracco J, Hallett M, Cohen LG (1993) Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain 116(Pt 3):511–525

    Article  PubMed  Google Scholar 

  • Cisek P, Crammond DJ, Kalaska JF (2003) Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm. J Neurophysiol 89:22–942

    PubMed  Google Scholar 

  • Cohen LG, Roth BJ, Wassermann EM, Topka H, Fuhr P, Schultz J, Hallett M (1991) Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions. J Clin Neurophysiol 8:56–65

    Article  PubMed  CAS  Google Scholar 

  • Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–176

    Article  PubMed  Google Scholar 

  • de Jong BM, Leenders KL, Paans AM (2002) Right parieto-premotor activation related to limb-independent antiphase movement. Cereb Cortex 12:1213–1217

    Article  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia 42:855–867

    Article  PubMed  CAS  Google Scholar 

  • Gandolfo F, Li C, Benda BJ, Schioppa CP, Bizzi E (2000) Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc Natl Acad Sci U S A 97:2259–2263

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Forssberg H, Iwasaki N (1994) Formation and lateralization of internal representations underlying motor commands during precision grip. Neuropsychologia 32:555–568

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry RB (1998) Abstract and effector-specific representations of motor sequences identified with PET. J Neurosci 18:9420–9428

    PubMed  CAS  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146:369–378

    Article  PubMed  Google Scholar 

  • Imamizu H, Uno Y, Kawato M (1998) Adaptive internal model of intrinsic kinematics involved in learning an aiming task. J Exp Psychol Hum Percept Perform 24:812–829

    Article  PubMed  CAS  Google Scholar 

  • Japikse KC, Negash S, Howard JH Jr, Howard DV (2003) Intermanual transfer of procedural learning after extended practice of probabilistic sequences. Exp Brain Res 148:38–49

    Article  PubMed  Google Scholar 

  • Keele SW, Jennings P, Jones S, Caulton D, Cohen A (1995) On the modularity of sequence representation. J Mot Behav 27:17–30

    Article  Google Scholar 

  • Kelso JAS, Zanone PG (2002) Coordination dynamics of learning and transfer across different effector systems. J Exp Psychol Hum Percept Perform 28:776–797

    Article  PubMed  CAS  Google Scholar 

  • Kelso JA, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 5:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kelso JAS, Scholz JP, Schöner G (1986) Non-equilibrium phase transitions in coordinated biological motions: Critical fluctuations. Phys Lett A 118:279–284

    Article  Google Scholar 

  • Kleim JA, Barbay S, Cooper NR, Hogg TM, Reidel CN, Remple MS, Nudo RJ (2002) Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem 77:63–77

    Article  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S, Jansen O (2003) Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur J Neurosci 18:3375–3387

    Article  PubMed  CAS  Google Scholar 

  • Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30:593–607

    Article  PubMed  CAS  Google Scholar 

  • Morton SM, Lang CE, Bastian AJ (2001) Inter- and intra-limb generalization of adaptation during catching. Exp Brain Res 141:438–445

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, Boroojerdi B, Poewe W, Hallett M (2002) Early consolidation in human primary motor cortex. Nature 415:640–644

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  CAS  Google Scholar 

  • Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048

    PubMed  CAS  Google Scholar 

  • Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP (1998) Strengthening of horizontal cortical connections following skill learning. Nat Neurosci 1:230–234

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82:225–260

    Article  Google Scholar 

  • Schmidt RC, Treffner PJ, Shaw BK, Turvey MT (1992) Dynamical aspects of learning an interlimb rhythmic movement pattern. J Mot Behav 24:67–83

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Walter CB, Serrien DJ (1997) Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio. J Exp Psychol Hum Percept Perform 23:1087–1110

    Article  Google Scholar 

  • Temprado JJ, Swinnen SP (2005) Dynamics of learning and transfer of muscular and spatial relative phase in bimanual coordination: evidence for abstract directional codes. Exp Brain Res 160:180–188

    Article  PubMed  CAS  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2004) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360

    Article  PubMed  Google Scholar 

  • Wigmore V, Tong C, Flanagan JR (2002) Visuomotor rotations of varying size and direction compete for a single internal model in motor working memory. J Exp Psychol Hum Percept Perform 28:447–457

    Article  PubMed  Google Scholar 

  • Wright C (1990) Generalized motor programs: reexamining claims of effector independence in writing. In: Jeannerod M (eds) Attention and performance XIII: motor representation and control. Erlbaum Associates, Hillsdale, pp 294–320

  • Zanone PG, Kelso JA (1997) Coordination dynamics of learning and transfer: collective and component levels. J Exp Psychol Hum Percept Perform 23:1454–1480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Sophie Vangheluwe was supported by the Fund for Scientific Research-Flanders. Additional support was provided through a grant from the Research Council of K.U. Leuven, Belgium (contract no. OT/03/61) and the National Fund for Scientific Research, Belgium (project G.0460.04 and G.0105.05), awarded to S. Swinnen. Reprint requests should be sent to S. Vangheluwe, Motor Control Laboratory, K.U. Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Vangheluwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vangheluwe, S., Suy, E., Wenderoth, N. et al. Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Exp Brain Res 170, 543–554 (2006). https://doi.org/10.1007/s00221-005-0238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0238-0

Keywords

Navigation