Skip to main content
Log in

The modulation of intermanual interactions during the specification of the directions of bimanual movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In two experiments bimanual movements with various combinations of target directions were studied by means of the timed-response procedure. The findings revealed an adaptive modulation of intermanual interactions during direction specifications depending on particular target directions. For symmetric movements intermanual correlations of movement directions are positive, indicating a symmetric coupling. For parallel movements the positive intermanual correlations, observed at short preparation intervals, turn into negative correlations as the time available for motor preparation increases. Biases of mean directions, that can be observed for movements to targets with different eccentricities, reflect one or the other kind of coupling, symmetrical for symmetric target directions and parallel for parallel target directions. These biases are static, that is, they are present at long preparation times, and they are phasically enhanced at shorter preparation intervals. The task-adaptive modulation of intermanual interactions is superposed on a basic symmetry bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The different effects of measurement noise on the intermanual correlations of terminal and initial directions result from the different ranges of coordinates and can easily be illustrated by way of simulation. We generated two sets of correlated normally distributed directions (μ=30, σ2=5 ρ=0.8). For each direction we determined the x- and y-coordinates for vector lengths of 20 and 150 mm. These coordinates were rounded to units of 0.5 mm, corresponding to the coordinates used in the determination of initial and terminal directions in the experiment. For each length the directions were re-computed from the rounded coordinates. For a typical sample of 1000 cases the means were 29.98° and 30.02° for the left and right hand, respectively, the standard deviations were 2.22 and 2.25°, and the intermanual correlation was 0.8048. Means (and standard deviations) for the re-computed terminal directions were 29.98° (2.22°) and 30.02° (2.25°) with a correlation of 0.8050; means (and standard deviations) for the re-computed initial directions were 29.96° (2.25°) and 30.03° (2.30°) with a correlation of 0.7751. The differences in standard deviations and correlations are consistent across samples, but not the difference in the means.

References

  • Cattaert D, Semjen A, Summers JJ (1999) Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biol Cybern 81:343–358

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton S, Vindras P, Grea H, Turner RS (2003) Basal ganglia network mediates the control of movement amplitude. Exp Brain Res 153:197–209

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hazeltine E, Kennerley S, Ivry RB (2001) Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychol Sci 12:493–498

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Cardoso de Oliveira S (2004) Electrophysiological approaches to bimanual coordination in primates. In: Swinnen SP, Duysens J (eds) Neuro-behavioral determinants of interlimb coordination. Kluwer, Norwell, Mass, pp 131–153

    Google Scholar 

  • Fu Q-G, Suarez JI, Ebner TJ (1993) Neuronal specification of direction and distance during reaching movements in the superior precentral motor area and primary motor cortex of monkeys. J Neurophysiol 70:2097–2116

    PubMed  CAS  Google Scholar 

  • Fu Q-G, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate motor and premotor neurons. J Neurophysiol 73:836–854

    PubMed  CAS  Google Scholar 

  • Ghez C, Favilla M, Ghilardi MF, Gordon J, Bermejo R, Pullman S (1997) Discrete and continuous planning of hand movements and isometric force trajectories. Exp Brain Res 115:217–233

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994) Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99:97–111

    PubMed  CAS  Google Scholar 

  • Hening W, Favilla M, Ghez C (1988) Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Exp Brain Res 71:116–128

    PubMed  CAS  Google Scholar 

  • Heuer H (1990) Rapid responses with the left or right hand: response–response compatibility effects due to intermanual interactions. In: Proctor RW, Reeve TG (eds) Stimulus-response compatibility: An integrated perspective. North-Holland, Amsterdam, pp 311–342

    Google Scholar 

  • Heuer H (1993) Structural constraints on bimanual movements. Psychol Res 55:83–98

    Article  PubMed  CAS  Google Scholar 

  • Heuer H (1996) Coordination. In: Heuer H, Keele SW (eds) Handbook of Perception and Action. Vol. 2: Motor skills. Academic Press, London, pp 121–180

    Google Scholar 

  • Heuer H, Klein W (2005) Intermanual interactions in discrete and periodic bimanual movements with same and different amplitudes. Exp Brain Res

  • Heuer H, Spijkers W, Kleinsorge T, van der Loo H, Steglich C (1998) The time course of cross-talk during the simultaneous specification of bimanual movement amplitudes. Exp Brain Res 118:381–392

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Kleinsorge T, Spijkers W, Steglich C (2001) Static and phasic cross-talk effects in discrete bimanual reversal movements. J Mot Behav 33:67–85

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher J, Hedges LV, Duncan S (1991) Categories and particulars: prototype effects in estimating spatial location. Psychol Rev 98:352–376

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (2003) Sensorimotor transformations in cortical motor areas. Neurosci Res 46:1–10

    Article  PubMed  Google Scholar 

  • Kelso JAS, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 5:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kleinsorge T, Heuer H (1999) Hierarchical switching in a multi-dimensional task space. Psychol Res 62:300–312

    Article  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933

    Article  PubMed  Google Scholar 

  • Levin O, Ouamer M, Steyvers M, Swinnen SP (2001) Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Exp Brain R 141:471–484

    Article  PubMed  CAS  Google Scholar 

  • Logan GD (2003) Simon-type effects: Chronometric evidence for keypress schemata in typewriting. J Exp Psychol Hum Percept Perform 29:741–757

    Article  PubMed  Google Scholar 

  • Marteniuk RG, MacKenzie CL, Baba DM (1984) Bimanual movement control: Information processing and interaction effects. Q J Exp Psychol 36A:335–365

    Google Scholar 

  • Massion J (1992) Movement, posture, and equilibrium: Interaction and coordination. Prog Neurobiol 38:35–56

    Article  PubMed  CAS  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of coordination. Nature 414:69–73

    Article  PubMed  ADS  CAS  Google Scholar 

  • Merz F, Kalveram K-Th (1965) Kritik der Differenzierungshypothese der Intelligenz. Arch Gesamte Psychol 117:287–295

    Google Scholar 

  • Messier J, Kalaska JF (1999) Comparison of variability of initial kinematics and endpoints of reaching movements. Exp Brain Res 125:139–152

    Article  PubMed  CAS  Google Scholar 

  • Preilowski B (1975) Bilateral motor interaction: Perceptual-motor performance of partial and complete “split-brain” patients. In: Zülch KJ, Creutzfeldt O, Galbraith GG (eds) Cerebral localization. Springer, Berlin Heidelberg New York pp 115–132

    Google Scholar 

  • Rinkenauer G, Ulrich R, Wing AM (2001) Brief bimanual force pulses: correlations between the hand in force and time. J Exp Psychol Hum Percept Perform 27:1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Monsell S (1995) The cost of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124:207–231

    Article  Google Scholar 

  • Rossetti Y, Desmurget M, Prablanc C (1995) Vector coding of movement: vision, proprioception, or both? J Neurophysiol 74:457–463

    PubMed  CAS  Google Scholar 

  • Sherwood DE (1990) Practice and assimilation effects in a multilimb aiming task. J Mot Behav 22:267–291

    PubMed  CAS  Google Scholar 

  • Sherwood DE (1991) Distance and location assimilation in rapid bimanual movement. Res Q Exerc Sport 62:302–308

    PubMed  CAS  Google Scholar 

  • Sherwood DE (1994a) Interlimb amplitude differences, spatial assimilations, and the temporal structure of rapid bimanual movements. Hum Mov Sci 13:841–860

    Article  Google Scholar 

  • Sherwood DE (1994b) Hand preference, practice order, and spatial assimilations in rapid bimanual movement. J Mot Behav 26:123–134

    Article  PubMed  CAS  Google Scholar 

  • Sherwood DE, Nishimura KM (1992) EMG amplitude and spatial assimilation effects in rapid bimanual movement. Res Q Exerc Sport 63:284–291

    PubMed  CAS  Google Scholar 

  • Spijkers W, Heuer H (2004) Behavioral principles of interlimb coordination. In: Swinnen SP, Duysens J (eds) Neuro-behavioral determinants of interlimb coordination. Kluwer, Norwell, Mass, pp 223–258

    Google Scholar 

  • Spijkers W, Heuer H (1995) Structural constraints on the performance of symmetrical bimanual movements with different amplitudes. Q J Exp Psychol 48A:716–740

    Google Scholar 

  • Steglich C (2002) Experimentelle Untersuchungen zur bimanuellen Koordination als transiente Kopplung bei der Richtungsspezifikation. Unpublished Dissertation, RWTH Aachen

  • Steglich C, Heuer H, Spijkers W, Kleinsorge T (1999) Bimanual coupling during the specification of isometric forces. Exp Brain Res 129:302–316

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Levin O, Duysens J (2001) Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behav Brain Res 123:201–218

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Duysens J (2002) Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. J Cogn Neurosci 14:463–471

    Article  PubMed  Google Scholar 

  • Swinnen SP, Puttemans V, Vangheluwe S, Wenderoth N, Levin O, Dounskaia N (2003) Directional interference during bimanual coordination: is interlimb coupling mediated by afferent or efferent processes. Behav Brain Res 139:177–195

    Article  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning internal models of reaching movements. J Neurosci 19:8573–8588

    PubMed  CAS  Google Scholar 

  • Vindras P, Viviani P (2002) Altering the visuomotor gain. Evidence that motor plans deal with vector quantities. Exp Brain Res 147:280–295

    Article  PubMed  Google Scholar 

  • Weigelt M (2004) Target-related coupling in bimanual coordination. Unpublished Dissertation. LMU Munich

  • Wenderoth N, Debaere F, Sunaert S, van Hecke P, Swinnen SP (2004) Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex 14:1153–1163

    Article  PubMed  Google Scholar 

  • Wenderoth N, Debaere F, Sunaert S, Swinnen SP (2005) Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction. Hum Brain Mapp 26:286–300

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by grant HE 1187/14-1 of the Deutsche Forschungsgemeinschaft. We thank Barbara Herbst, Holger Küper, Kevin Schepers, Henning Stracke, and Petra Wallmeyer for their support in running the experiments, and Thomas Kleinsorge, Stephan Swinnen, and two anonymous reviewers for helpful comments on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Heuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, H., Klein, W. The modulation of intermanual interactions during the specification of the directions of bimanual movements. Exp Brain Res 169, 162–181 (2006). https://doi.org/10.1007/s00221-005-0135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0135-6

Keywords

Navigation