Skip to main content

Advertisement

Log in

Chromatic sensitivity of neurones in area MT of the anaesthetised macaque monkey compared to human motion perception

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We recorded activity from neurones in cortical motion-processing areas, middle temporal area (MT) and middle posterior superior temporal sulcus (MST), of anaesthetised and paralysed macaque monkeys in response to moving sinewave gratings modulated in luminance and chrominance. The activity of MT and MST neurones was highly dependent on luminance contrast. In three of four animals isoluminant chromatic modulations failed to activate MT/MST neurones significantly. At low luminance contrast a systematic dependence on chromaticity was revealed, attributable mostly to residual activity of the magnocellular pathway. Additionally, we found indications for a weak S-cone input, but rod intrusion could also have made a contribution. In contrast to the activity of MT and MST neurones, speed judgments and onset amplitude of evoked optokinetic eye movements in human subjects confronted with equivalent visual stimuli were largely independent of luminance modulation. Motion of every grating (including isoluminant) was readily visible for all but one observer. Similarity with the activity of MT/MST cells was found only for motion-nulling equivalent luminance contrast judgments at isoluminance. Our results suggest that areas MT and MST may not be involved in the processing of chromatic motion, but effects of central anaesthesia and/or the existence of intra- and inter-species differences must also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agonie C, Gorea A (1993) Equivalent luminance contrast of red-green drifting stimuli: dependency on luminance-color interactions and on the psychophysical task. J Opt Soc Am A 10:1341–1352

    PubMed  CAS  Google Scholar 

  • Albright TD (1992) Form-cue invariant motion processing in primate visual cortex. Science 255:1141–1143

    PubMed  CAS  Google Scholar 

  • Albright TD, Stoner GR (1995) Visual motion perception. Proc Natl Acad Sci USA 92:2433–2440

    PubMed  CAS  Google Scholar 

  • Blaser E, Sperling G, Lu ZL (1999) Measuring the amplification of attention. Proc Natl Acad Sci USA 96:11681–11686

    Article  PubMed  CAS  Google Scholar 

  • Born RT, Groh JM, Zhao R, Lukasewycz SJ (2000) Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26:725–734

    Article  PubMed  CAS  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765

    PubMed  CAS  Google Scholar 

  • Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13:87–100

    PubMed  CAS  Google Scholar 

  • Brückner G, Seeger G, Brauer K, Härtig W, Katza J, Bigl V (1994) Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the Mongolian gerbil and rat. Brain Res 658:67–86

    Article  PubMed  Google Scholar 

  • Burkhalter A, Van Essen DC (1986) Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. J Neurosci 6:2327–2351

    PubMed  CAS  Google Scholar 

  • Burr DC, Fiorentini A, Morrone C (1998) Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed. Vision Res 38:3681–3690

    Article  PubMed  CAS  Google Scholar 

  • von Campenhausen M, Kirschfeld K (1999) Visual attention modifies spectral sensitivity of nystagmic eye movements. Vision Res 39:1551–1554

    Article  PubMed  Google Scholar 

  • Cavanagh P (1992) Attention-based motion perception. Science 257:1563–1565

    PubMed  CAS  Google Scholar 

  • Cavanagh P, Anstis S (1991) The contribution of color to motion in normal and color-deficient observers. Vision Res 31:2109–2148

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh P, Tyler CW, Favreau OE (1984) Perceived velocity of moving chromatic gratings. J Opt Soc Am A 1:893–899

    PubMed  CAS  Google Scholar 

  • Cavanagh P, MacLeod DI, Anstis SM (1987) Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. J Opt Soc Am A 4:1428–1438

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Callaway EM (2002) S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35:1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Chawla D, Phillips J, Buechel C, Edwards R, Friston KJ (1998) Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7:86–96

    Article  PubMed  CAS  Google Scholar 

  • Chawla D, Buechel C, Edwards R, Howseman A, Josephs O, Ashburner J, Friston KJ (1999) Speed-dependent responses in V5: a replication study. Neuroimage 9:508–515

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Hasegawa T, Saleem KS, Tanaka K (1994) Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J Neurophysiol 71:2269–2280

    PubMed  CAS  Google Scholar 

  • Chichilnisky EJ, Heeger D, Wandell BA (1993) Functional segregation of color and motion perception examined in motion nulling. Vision Res 33:2113–2125

    Article  PubMed  CAS  Google Scholar 

  • Churan J, Ilg UJ (2001) Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area. J Opt Soc Am A 18:2297–2306

    CAS  Google Scholar 

  • Churchland M, Lisberger S (2001) Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J Neurosci 21:9387–9402

    PubMed  CAS  Google Scholar 

  • Cowey A, Marcar VL (1992) The effect of removing superior temporal cortical motion areas in the macaque monkey: I. Motion discrimination using simple dots. Eur J Neurosci 4:1219–1227

    PubMed  Google Scholar 

  • Cowey A, Heywood CA, Irving-Bell L (2001) The regional cortical basis of achromatopsia: a study on macaque monkeys and an achromatopsic patient. Eur J Neurosci 14:1555–1566

    Article  PubMed  CAS  Google Scholar 

  • Crognale MA, Schor CM (1996) Contribution of chromatic mechanisms to the production of small-field optokinetic nystagmus (OKN) in normals and strabismics. Vision Res 36:1687–1698

    Article  PubMed  CAS  Google Scholar 

  • Cusick CG, Seltzer B, Cola M, Griggs E (1995) Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J Comp Neurol 360:513–535

    Article  PubMed  CAS  Google Scholar 

  • Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775

    Article  PubMed  CAS  Google Scholar 

  • Derrington AM, Krauskopf J, Lennie P (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol 357:241–265

    PubMed  CAS  Google Scholar 

  • Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 2. Elsevier, New York, pp 267–299

  • Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334:125–150

    Article  PubMed  CAS  Google Scholar 

  • Dobkins KR, Albright TD (1993) What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Vision Res 33:1019–1036

    Article  PubMed  CAS  Google Scholar 

  • Dobkins KR, Albright TD (1994) What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT. J Neurosci 14:4854–4870

    PubMed  CAS  Google Scholar 

  • Dobkins KR, Albright TD (1995) Behavioral and neural effects of chromatic isoluminance in the primate visual motion system. Vis Neurosci 12:321–332

    PubMed  CAS  Google Scholar 

  • Dobkins KR, Gunther KL, Peterzell DH (2000a) What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity? Vision Res 40:613–628

    Article  CAS  Google Scholar 

  • Dobkins KR, Thiele A, Albright TD (2000b) Comparison of red-green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species. J Opt Soc Am A 17:545–556

    CAS  Google Scholar 

  • Dougherty RF, Press WA, Wandell BA (1999) Perceived speed of colored stimuli. Neuron 24:893–899

    Article  PubMed  CAS  Google Scholar 

  • Dursteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965

    PubMed  CAS  Google Scholar 

  • Dursteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol 57:1262–1287

    PubMed  CAS  Google Scholar 

  • Elfar SD, Britten KH (1998) Chromatic contributions to motion processing in macaque extrastriate area MT. Soc Neurosci Abstr 24:1978

    Google Scholar 

  • Farell B (1999) Color and luminance in the perception of 1- and 2- dimensional motion. Vision Res 39:2633–2647

    Article  PubMed  CAS  Google Scholar 

  • Ferrera VP, Rudolph KK, Maunsell JH (1994) Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci 14:6171–6186

    PubMed  CAS  Google Scholar 

  • Ffytche DH, Skidmore BD, Zeki S (1995) Motion-from-hue activates area V5 of human visual cortex. Proc R Soc Lond B 260:353–358

    CAS  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Hawken MJ (1995) Temporal and chromatic properties of motion mechanisms. Vision Res 35:1547–1563

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Hawken MJ (1996) Perceived velocity of luminance, chromatic and non-fourier stimuli: influence of contrast and temporal frequency. Vision Res 36:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Kiper DC, Beusmans JM, Carandini M, Zaidi Q, Movshon JA (1994) Chromatic properties of neurons in macaque MT. Vis Neurosci 11:455–466

    PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Kiper DC, Fenstemaker SB (1996) Processing of color, form, and motion in macaque area V2. Vis Neurosci 13:161–172

    PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77:1906–1923

    PubMed  CAS  Google Scholar 

  • Gellman RS, Carl JR, Miles FA (1990) Short latency ocular-following responses in man. Vis Neurosci 5:107–122

    PubMed  CAS  Google Scholar 

  • Groh JM, Born RT, Newsome WT (1997) How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J Neurosci 17:4312–4330

    PubMed  CAS  Google Scholar 

  • Guo K, Benson PJ (1999) Grating and plaid chrominance motion influences the suppressed ocular following response. Neuroreport 10:387–392

    PubMed  CAS  Google Scholar 

  • Hadjikhani N, Tootell RB (2000) Projection of rods and cones within human visual cortex. Hum Brain Mapp 9:55–63

    Article  PubMed  CAS  Google Scholar 

  • Havránek T (1993) Statistika pro biologické a lékařské vědy. Academia, Praha

    Google Scholar 

  • Hawken MJ, Gegenfurtner KR, Tang C (1994) Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367:268–270

    Article  PubMed  CAS  Google Scholar 

  • Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999) Motion opponency in visual cortex. J Neurosci 19:7162–7174

    PubMed  CAS  Google Scholar 

  • Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Merker BH (1983) Technical modifications of Gallyas’ silver stain for myelin. J Neurosi Methods 8:95–97

    Article  CAS  Google Scholar 

  • Heywood CA, Gaffan D, Cowey A (1995) Cerebral achromatopsia in monkeys. Eur J Neurosci 7:1064–1073

    PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organisation in the macaque monkey visual system: a quantitative imunohistochemical analysis. J Comp Neurol 352:161–186

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Ilg U (1997) Responses of primate area MT during the execution of optokinetic nystagmus and afternystagmus. Exp Brain Res 113:361–361

    PubMed  CAS  Google Scholar 

  • Ilg U, Churan J (2004) Motion perception without explicit activity in areas MT and MST. J Neurophysiol 92:1512–1523

    Article  PubMed  Google Scholar 

  • Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4:409–416

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (1997) Theories of visual cortex organisation in primates. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex, vol 12. Plenum, New York, pp 91–125

  • Kaiser PK, Lee BB, Martin PR, Valberg A (1990) The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. J Physiol 422:153–183

    PubMed  CAS  Google Scholar 

  • Kawano K (1999) Ocular tracking: behavior and neurophysiology. Curr Opin Neurobiol 9:467–473

    Article  PubMed  CAS  Google Scholar 

  • Komatsu H, Wurtz RH (1989) Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 62:31–47

    PubMed  CAS  Google Scholar 

  • Lee BB, Pokorny J, Smith VC, Martin PR, Valberg A (1990) Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J Opt Soc Am A 7:2223–2236

    PubMed  CAS  Google Scholar 

  • Lee BB, Smith VC, Pokorny J, Kremers J (1997) Rod inputs to macaque ganglion cells. Vision Res 37:2813–2828

    PubMed  CAS  Google Scholar 

  • Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818

    PubMed  CAS  Google Scholar 

  • Lisberger S, Movshon J (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246

    PubMed  CAS  Google Scholar 

  • Lu ZL, Lesmes LA, Sperling G (1999) The mechanism of isoluminant chromatic motion perception. Proc Natl Acad Sci USA 96:8289–8294

    Article  PubMed  CAS  Google Scholar 

  • Marcar VL, Cowey A (1992) The effect of removing superior temporal cortical motion areas in the macaque monkey: II. Motion discrimination using random dot displays. Eur J Neurosci 4:1228–1238

    PubMed  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334

    PubMed  CAS  Google Scholar 

  • McKeefry DJ (2001) Visual evoked potentials elicited by chromatic motion onset. Vision Res 41:2005–2025

    Article  PubMed  CAS  Google Scholar 

  • McKeefry DJ (2002) The influence of stimulus chromaticity on the isoluminant motion-onset VEP. Vision Res 42:909–922

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56:1321–1354

    PubMed  CAS  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201–2211

    PubMed  CAS  Google Scholar 

  • Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840

    PubMed  CAS  Google Scholar 

  • Newsome W, Wurtz R, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620

    PubMed  CAS  Google Scholar 

  • Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341:52–54

    Article  PubMed  CAS  Google Scholar 

  • van Norren D, Padmos P (1975) Cone dark adaptation: the influence of halothane anesthesia. Invest Ophthalmol Vis Sci 14:212–227

    Google Scholar 

  • van Norren D, Padmos P (1977) Influence of anesthetics, ethyl alcohol, and freon on dark adaptation of monkey cone ERG. Invest Ophthalmol Vis Sci 16:80–83

    PubMed  Google Scholar 

  • O’Keefe LP, Movshon JA (1998) Processing of first- and second- order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci 15:305–317

    Article  PubMed  CAS  Google Scholar 

  • Orban GA (1997) Visual processing in macaque area MT/V5 and its satellites (MSTd and MSTv). In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex, vol 12. Plenum, New York, pp 359–434

  • Orban GA, Saunders RC, Vandenbussche E (1995) Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci 7:2261–2276

    PubMed  CAS  Google Scholar 

  • Pack CC, Berezovskii VK, Born RT (2001) Dynamic properties of neurons in cortical area MT in alert and anesthetized macaque monkeys. Nature 414:905–908

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Merigan WH (1994) Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 4:247–259

    PubMed  CAS  Google Scholar 

  • Patzwahl DR, Zanker JM, Altenmuller EO (1994) Cortical potentials reflecting motion processing in humans. Vis Neurosci 11:1135–1147

    PubMed  CAS  Google Scholar 

  • Perrone JA, Thiele A (2001) Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4:526–532

    PubMed  CAS  Google Scholar 

  • Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537

    PubMed  CAS  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723

    Article  PubMed  CAS  Google Scholar 

  • Robson T (1999) Topics in computerized visual-stimulus generation. In: Carpenter R, Robson J (eds) Vision research: a practical guide to laboratory methods. Oxford University Press, New York, pp 81–105

    Google Scholar 

  • Rudolph K, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90–100

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Tanaka K, Isono H, Yasuda M, Mikami A (1989) Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Exp Brain Res 75:1–14

    Article  PubMed  CAS  Google Scholar 

  • Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–177

    Article  PubMed  CAS  Google Scholar 

  • Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci 12:2331–2355

    PubMed  CAS  Google Scholar 

  • Schiller PH (1993) The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis Neurosci 10:717–746

    Article  PubMed  CAS  Google Scholar 

  • Schiller PH, Logothetis NK, Charles ER (1991) Parallel pathways in the visual system: their role in perception at isoluminance. Neuropsychologia 29:433–441

    Article  PubMed  CAS  Google Scholar 

  • Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30:1–10

    Article  PubMed  CAS  Google Scholar 

  • Seidemann E, Poirson AB, Wandell BA, Newsome WT (1999) Color signals in area MT of the macaque monkey. Neuron 24:911–917

    Article  PubMed  CAS  Google Scholar 

  • Seiffert AE, Cavanagh P (1999) Position-based motion perception for color and texture stimuli: effects of contrast and speed. Vision Res 39:4172–4185

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci 16:1486–1510

    PubMed  CAS  Google Scholar 

  • Sincich LC, Park KP, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Smith AT, Hammond P (1986) Hemifield differences in perceived velocity. Perception 15:111–117

    PubMed  CAS  Google Scholar 

  • Sperling G, Lu Z-L (1998) A system analysis of visual motion perception. In: Watanabe T (eds) High-level motion processing: computational, neurobiological, and psychophysical perspectives. MIT Press, Cambridge, pp 153–183

    Google Scholar 

  • Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711–1737

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Smithson H, Lee B, Zaidi Q (2004) A new technique for measuring cone inputs to visual neurons. Invest Ophthalmol Vis Sci 45, E-Abstract 4277

    Google Scholar 

  • Tamura H, Sato H, Katsuyama N, Hata Y, Tsumoto T (1996) Less segregated processing of visual information in V2 than in V1 of the monkey visual cortex. Eur J Neurosci 8:300–309

    PubMed  CAS  Google Scholar 

  • Teller DY, Lindsey DT (1993) Motion at isoluminance: motion dead zones in three-dimensional color space. J Opt Soc Am A 10:1324–1331

    PubMed  CAS  Google Scholar 

  • Thiele A, Distler C, Hoffmann KP (1999a) Decision-related activity in the macaque dorsal visual pathway. Eur J Neurosci 11:2044–2058

    Article  CAS  Google Scholar 

  • Thiele A, Dobkins KR, Albright TD (1999b) The contribution of color to motion processing in macaque middle temporal area. J Neurosci 19:6571–6587

    CAS  Google Scholar 

  • Thiele A, Dobkins KR, Albright TD (2000) Neural correlates of contrast detection at threshold. Neuron 26:715–724

    Article  PubMed  CAS  Google Scholar 

  • Thiele A, Dobkins KR, Albright TD (2001) Neural correlates of chromatic motion perception. Neuron 32:351–358

    Article  PubMed  CAS  Google Scholar 

  • Thiele A, Rezec A, Dobkins KR (2002) Chromatic input to motion processing in the absence of attention. Vision Res 42:1395–1401

    Article  PubMed  Google Scholar 

  • Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    PubMed  CAS  Google Scholar 

  • Tychsen L, Lisberger S (1986) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. J Neurophysiol 56:953–968

    PubMed  CAS  Google Scholar 

  • Ulbert I, Karmos G, Heit G, Halgren E (2001) Early discrimination of coherent versus incoherent motion by multiunit and synaptic activity in human putative MT+. Hum Brain Mapp 13:226–238

    Article  PubMed  CAS  Google Scholar 

  • Valberg A, Lee BB, Kaiser PK, Kremers J (1992) Responses of macaque ganglion cells to movement of chromatic borders. J Physiol 458:579–602

    PubMed  CAS  Google Scholar 

  • Van Essen DC, Maunsell JHR (1980) Two-dimensional maps of the cerebral cortex. J Comp Neurol 191:255–281

    Article  PubMed  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Hecke PV, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    Article  PubMed  CAS  Google Scholar 

  • Walsh V, Carden D, Butler SR, Kulikowski JJ (1993) The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behav Brain Res 53:51–62

    PubMed  CAS  Google Scholar 

  • Wandell BA (1995) Foundations of vision. Sinauer Press, Sunderland

    Google Scholar 

  • Wandell BA, Poirson AB, Newsome WT, Baseler HA, Boynton GM, Huk A, Gandhi S, Sharpe LT (1999) Color signals in human motion-selective cortex. Neuron 24:901–909

    Article  PubMed  CAS  Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science. Wiley, New York

    Google Scholar 

  • Yamasaki DS, Wurtz RH (1991) Recovery of function after lesions in the superior temporal sulcus in the monkey. J Neurophysiol 66:651–673

    PubMed  CAS  Google Scholar 

  • Zeki S (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573

    PubMed  CAS  Google Scholar 

  • Zeki S (1983) The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B 217:449–470

    Article  PubMed  CAS  Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by DFG SFB 509 "Neuronale Mechanismen des Sehens—Neurovision". I. Riečanský was supported by a stipend from the International Graduate School of Neuroscience, Ruhr University Bochum, Germany and from the Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia. Prof. B.B. Lee and Prof. A. Ritomský provided valuable comments to the manuscript. We like to thank H. Korbmacher, B. Krekelberg, and L. Lünenburger for help and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Peter Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riečanský, I., Thiele, A., Distler, C. et al. Chromatic sensitivity of neurones in area MT of the anaesthetised macaque monkey compared to human motion perception. Exp Brain Res 167, 504–525 (2005). https://doi.org/10.1007/s00221-005-0058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0058-2

Keywords

Navigation