Experimental Brain Research

, Volume 167, Issue 2, pp 211–219 | Cite as

Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans

  • R. C. G. Helmich
  • T. Bäumer
  • H. R. Siebner
  • B. R. Bloem
  • A. Münchau
Research Article

Abstract

A conditioning electrical stimulus to a digital nerve can inhibit the motor-evoked potentials (MEPs) in adjacent hand muscles elicited by transcranial magnetic stimulation (TMS) to the contralateral primary motor cortex (M1) when given 25–50 ms before the TMS pulse. This is referred to as short-latency afferent inhibition (SAI). We studied inter-hemispheric differences (Experiment 1) and within-limb somatotopy (Experiment 2) of SAI in healthy right-handers. In Experiment 1, conditioning electrical pulses were applied to the right or left index finger (D2) and MEPs were recorded from relaxed first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscles ipsilateral to the conditioning stimulus. We found that SAI was more pronounced in right hand muscles. In Experiment 2, electrical stimulation was applied to the right D2 and MEPs were recorded from ipsilateral FDI, extensor digitorum communis (EDC) and biceps brachii (BB) muscles. The amount of SAI did not differ between FDI, EDC and BB muscles. These data demonstrate inter-hemispheric differences in the processing of cutaneous input from the hand, with stronger SAI in the dominant left hemisphere. We also found that SAI occurred not only in hand muscles adjacent to electrical digital stimulation, but also in distant hand and forearm and also proximal arm muscles. This suggests that SAI induced by electrical D2 stimulation is not focal and somatotopically specific, but a more widespread inhibitory phenomenon.

Keywords

Afferent inhibition Handedness Somatotopy Sensorimotor integration Transcranial magnetic stimulation 

References

  1. Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4:216–222CrossRefPubMedGoogle Scholar
  2. Asanuma H, Pavlides C (1997) Neurobiological basis of motor learning in mammals. Neuroreport 8:i–viPubMedGoogle Scholar
  3. Beisteiner R, Windischberger C, Lanzenberger R, Edward V, Cunnington R, Erdler M, Gartus A, Streibl B, Moser E, Deecke L (2001) Finger somatotopy in human motor cortex. Neuroimage 13:1016–1026CrossRefPubMedGoogle Scholar
  4. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14:945–951CrossRefPubMedGoogle Scholar
  5. Buchner H, Ludwig I, Waberski T, Wilmes K, Ferbert A (1995) Hemispheric asymmetries of early cortical somatosensory evoked potentials revealed by topographic analysis. Electromyogr Clin Neurophysiol 35:207–215PubMedGoogle Scholar
  6. Civardi C, Cavalli A, Naldi P, Varrasi C, Cantello R (2000) Hemispheric asymmetries of cortico-cortical connections in human hand motor areas. Clin Nurophysiol 111:624–629CrossRefGoogle Scholar
  7. Classen J, Steinfelder B, Liepert J, Stefan K, Celnik P, Cohen LG, Hess A, Kunesch E, Chen R, Benecke R, Hallett M (2000) Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Exp Brain Res 130:48–59CrossRefPubMedGoogle Scholar
  8. Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018CrossRefPubMedGoogle Scholar
  9. Day BL, Riescher H, Struppler A, Rothwell JC, Marsden CD (1991) Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol (Lond) 433:41–57Google Scholar
  10. Dechent P, Frahm J (2003) Functional somatotopy of finger representations in human primary motor cortex. Hum Brain Mapp 18:272–283PubMedCrossRefGoogle Scholar
  11. Delwaide PJ, Olivier E (1990) Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation in parkinsonian patients. Adv Neurol 53:175–181PubMedGoogle Scholar
  12. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461CrossRefPubMedGoogle Scholar
  13. Floeter MK, Gerloff C, Kouri J, Hallett M (1998) Cutaneous withdrawal reflexes of the upper extremity. Muscle Nerve 21:591–598CrossRefPubMedGoogle Scholar
  14. Graziano MS, Taylor CS, Moore T, Cooke DF (2002) The cortical control of movement revisited. Neuron 36:349–362CrossRefPubMedGoogle Scholar
  15. Hammond G, Faulkner D, Byrnes M, Mastaglia F, Thickbroom G (2004) Transcranial magnetic stimulation reveals asymmetrical efficacy of intracortical circuits in primary motor cortex. Exp Brain Res 155:19–23CrossRefPubMedGoogle Scholar
  16. Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545:153–167CrossRefPubMedGoogle Scholar
  17. Ilic TV, Jung P, Ziemann U (2004) Subtle hemispheric asymmetry of motor cortical inhibitory tone. Clin Neurophysiol 115:330–340CrossRefPubMedGoogle Scholar
  18. Keller A (1993) Intrinsic synaptic organization of the motor cortex. Cereb Cortex 3:430–441PubMedCrossRefGoogle Scholar
  19. Krause T, Kurth R, Ruben J, Schwiemann J, Villringer K, Deuchert M, Moosmann M, Brandt S, Wolf K, Curio G, Villringer A (2001) Representational overlap of adjacent fingers in multiple areas of human primary somatosensory cortex depends on electrical stimulus intensity: an fMRI study. Brain Res 899:36–46CrossRefPubMedGoogle Scholar
  20. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519Google Scholar
  21. Kurth R, Villringer K, Curio G, Wolf KJ, Krause T, Repenthin J, Schwiemann J, Deuchert M, Villringer A (2000) fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport 11:1487–1491PubMedCrossRefGoogle Scholar
  22. Maertens de Noordhout A, Rothwell JC, Day BL, Dressler D, Nakashima K, Thompson PD, Marsden CD (1992) Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol (Lond) 447:535–548Google Scholar
  23. Manganotti P, Zanette G, Bonato C, Tinazzi M, Polo A, Fiaschi A (1997) Crossed and direct effects of digital nerves stimulation on motor evoked potential: a study with magnetic brain stimulation. Electroencephalogr Clin Neurophysiol 105:280–289PubMedCrossRefGoogle Scholar
  24. Netz J, Ziemann U, Homberg V (1995) Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res 104:527–533PubMedCrossRefGoogle Scholar
  25. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  26. Palmer E, Ashby P (1992) The transcortical nature of the late reflex responses in human small hand muscle to digital nerve stimulation. Exp Brain Res 91:320–326CrossRefPubMedGoogle Scholar
  27. Pujol J, Lopez-Sala A, Deus J, Cardoner N, Sebastian-Galles N, Conesa G, Capdevila A (2002) The lateral asymmetry of the human brain studied by volumetric magnetic resonance imaging. Neuroimage 17:670–679CrossRefPubMedGoogle Scholar
  28. Reis J, Tergau F, Hamer HM, Muller HH, Knake S, Fritsch B, Oertel WH, Rosenow F (2002) Topiramate selectively decreases intracortical excitability in human motor cortex. Epilepsia 43:1149–1156PubMedCrossRefGoogle Scholar
  29. Ridding MC, Pearce SL, Flavel SC (2005) Modulation of intracortical excitability in human hand motor areas. The effect of cutaneous stimulation and its topographical arrangement. Exp Brain Res 163:335–343CrossRefPubMedGoogle Scholar
  30. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol. 106:283–296PubMedCrossRefGoogle Scholar
  31. Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11:463–473CrossRefPubMedGoogle Scholar
  32. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 126:1883–1894CrossRefPubMedGoogle Scholar
  33. Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143PubMedGoogle Scholar
  34. Tamburin S, Manganotti P, Zanette G, Fiaschi A (2001) Cutaneomotor integration in human hand motor areas: somatotopic effect and interaction of afferents. Exp Brain Res 141:232–241CrossRefPubMedGoogle Scholar
  35. Tamburin S, Manganotti P, Marzi CA, Fiaschi A, Zanette G (2002) Abnormal somatotopic arrangement of sensorimotor interactions in dystonic patients. Brain 125:2719–2730CrossRefPubMedGoogle Scholar
  36. Tamburin S, Fiaschi A, Andreoli A, Forgione A, Manganotti P, Zanette G (2003a) Abnormal cutaneomotor integration in patients with cerebellar syndromes: a transcranial magnetic stimulation study. Clin Neurophysiol 114:643–651CrossRefPubMedGoogle Scholar
  37. Tamburin S, Fiaschi A, Idone D, Lochner P, Manganotti P, Zanette G (2003b) Abnormal sensorimotor integration is related to disease severity in Parkinson’s disease: a TMS study. Mov Disord 18:1316–1324CrossRefPubMedGoogle Scholar
  38. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand [published erratum appears in J Physiol (Lond) 2000 523:503–513Google Scholar
  39. Triggs WJ, Subramanium B, Rossi F (1999) Hand preference and transcranial magnetic stimulation asymmetry of cortical motor representation. Brain Res 835:324–329CrossRefPubMedGoogle Scholar
  40. Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154PubMedGoogle Scholar
  41. van Westen D, Fransson P, Olsrud J, Rosen B, Lundborg G, Larsson EM (2004) Fingersomatotopy in area 3b: an fMRI-study. BMC Neurosci 5:28CrossRefPubMedGoogle Scholar
  42. Yahagi S, Kasai T (1999) Motor evoked potentials induced by motor imagery reveal a functional asymmetry of cortical motor control in. Neurosci Lett 276:185–188CrossRefPubMedGoogle Scholar
  43. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • R. C. G. Helmich
    • 1
  • T. Bäumer
    • 2
  • H. R. Siebner
    • 3
  • B. R. Bloem
    • 1
  • A. Münchau
    • 2
  1. 1.Department of NeurologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of NeurologyHamburg University HospitalHamburgGermany
  3. 3.Department of NeurologyChristian-Albrechts-UniversityKielGermany

Personalised recommendations