Skip to main content

Advertisement

Log in

Functional applications of novel Semliki Forest virus vectors are limited by vector toxicity in cultures of primary neurons in vitro and in the substantia nigra in vivo

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The Semliki Forest virus (SFV) system has been shown to be highly efficient in transduction of cell lines and primary cells. We employed a novel “noncytotoxic” SFV(PD) vector for transduction of primary ventral midbrain floor cultures in vitro and rat substantia nigra in vivo. Rapid protein expression was noted with preferential transduction of neuronal cells including the dopaminergic subpopulation. To examine the suitability of the SFV vector system for functional gene expression, SFV(PD) vectors encoding for antiapoptotic proteins Bcl-XL and XIAP were designed. Despite effective transgene expression, SFV(PD) vectors were unable to rescue dopaminergic neurons from MPP+-induced apoptosis. In vivo, virus injection into substantia nigra resulted in fast onset of transgene expression, but elicited an activation of microglia and an inflammation response. We conclude that the use of novel SFV(PD) vectors is currently limited by persistent neurotoxicity of the vector system. Although SFV(PD) vectors may be useful for protein localization studies in dopaminergic neurons, functional applications will require the development of even less cytopathic vector systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atkins GJ, Sheahan BJ, Liljestrom P (1999) The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J Gen Virol 80:2287–2297

    CAS  PubMed  Google Scholar 

  • Atkins GJ, Sheahan BJ, Mooney DA (1990) Pathogenicity of Semliki Forest virus for the rat central nervous system and primary rat neural cell cultures: possible implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol 16:57–68

    CAS  PubMed  Google Scholar 

  • Barkats M, Millecamps S, Bilang-Bleuel A, Mallet J (2002) Neuronal transfer of the human Cu/Zn superoxide dismutase gene increases the resistance of dopaminergic neurons to 6-hydroxydopamine. J Neurochem 82:101–109

    Article  CAS  PubMed  Google Scholar 

  • Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P (1993) Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (N Y) 11:916–920

  • Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gahwiler BH (1999) Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci U S A 96:7041–7046

    Article  CAS  PubMed  Google Scholar 

  • Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H (1993) Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195:627–637

    Article  CAS  PubMed  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    CAS  PubMed  Google Scholar 

  • Georgievska B, Kirik D, Bjorklund A (2002) Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp Neurol 177:461–474

    Article  CAS  PubMed  Google Scholar 

  • Glasgow GM, McGee MM, Sheahan BJ, Atkins GJ (1997) Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78:1559–1563

    CAS  PubMed  Google Scholar 

  • Glasgow GM, McGee MM, Tarbatt CJ, Mooney DA, Sheahan BJ, Atkins GJ (1998) The Semliki Forest virus vector induces p53-independent apoptosis. J Gen Virol 79:2405–2410

    CAS  PubMed  Google Scholar 

  • Horellou P, Mallet J (1997) Gene therapy for Parkinson’s disease. Mol Neurobiol 15:241–256

    CAS  PubMed  Google Scholar 

  • Kim J, Dittgen T, Nimmerjahn A, Waters J, Pawlak V, Helmchen F, Schlesinger S, Seeburg PH, Osten P (2004) Sindbis vector SINrep(nsP2S726): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J Neurosci Methods 133:81–90

    Article  CAS  PubMed  Google Scholar 

  • Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347

    Article  CAS  PubMed  Google Scholar 

  • Kugler S, Meyn L, Holzmuller H, Gerhardt E, Isenmann S, Schulz JB, Bahr M (2001) Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci 17:78–96

    Article  CAS  PubMed  Google Scholar 

  • Kugler S, Straten G, Kreppel F, Isenmann S, Liston P, Bahr M (2000) The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ 7:815–824

    Article  CAS  PubMed  Google Scholar 

  • Latchman DS, Coffin RS (2001) Viral vectors for gene therapy in Parkinson’s disease. Rev Neurosci 12:69–78

    CAS  PubMed  Google Scholar 

  • Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9:1356–1361

  • Lilley CE, Branston RH, Coffin RS (2001) Herpes simplex virus vectors for the nervous system. Curr Gene Ther 1:339–358

    CAS  PubMed  Google Scholar 

  • Lingor P, Unsicker K, Krieglstein K (2000) GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol 163:55–62

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein PR, Castro MG (2002) Progress and challenges in viral vector-mediated gene transfer to the brain. Curr Opin Mol Ther 4:359–371

    CAS  PubMed  Google Scholar 

  • Lundstrom K (2002) Semliki forest virus-based expression for versatile use in receptor research. J Recept Signal Transduct Res 22:229–240

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom K, Rotmann D, Hermann D, Schneider EM, Ehrengruber MU (2001) Novel mutant Semliki Forest virus vectors: gene expression and localization studies in neuronal cells. Histochem Cell Biol 115:83–91

    CAS  PubMed  Google Scholar 

  • Lundstrom K, Schweitzer C, Richards JG, Ehrengruber M, Jenck F, Muhlhardt C (1999) Semliki forest virus vectors for in vitro and in vivo applications. Gene Ther Mol Biol 4:23–31

    Google Scholar 

  • Mathiot CC, Grimaud G, Garry P, Bouquety JC, Mada A, Daguisy AM, Georges AJ (1990) An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg 42:386–393

    CAS  PubMed  Google Scholar 

  • Mokhtarian F, Huan C, Roman C, Raine CS (2003) Semliki Forest virus-induced demyelination and remyelination- involvement of B cells and anti-myelin antibodies. J Neuroimmunol 137:19–31

    Article  CAS  PubMed  Google Scholar 

  • Morris MM, Dyson H, Baker D, Harbige LS, Fazakerley JK, Amor S (1997) Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. J Neuroimmunol 74:185–197

    Article  CAS  PubMed  Google Scholar 

  • Olkkonen VM, Liljestrom P, Garoff H, Simons K, Dotti CG (1993) Expression of heterologous proteins in cultured rat hippocampal neurons using the Semliki Forest virus vector. J Neurosci Res 35:445–451

    CAS  PubMed  Google Scholar 

  • Paxinos GWC (1998) The rat brain in stereotactic coordinates. Academic Press, San Diego

  • Shimoda K, Sauve Y, Marini A, Schwartz JP, Commissiong JW (1992) A high percentage yield of tyrosine hydroxylase-positive cells from rat E14 mesencephalic cell culture. Brain Res 586:319–331

    Article  CAS  PubMed  Google Scholar 

  • Thomas CE, Birkett D, Anozie I, Castro MG, Lowenstein PR (2001) Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 3:36–46

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 866:33–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Lingor.

Additional information

Funded by Deutsche Forschungsgemeinschaft through the DFG Research Center for Molecular Physiology of the Brain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingor, P., Schöll, U., Bähr, M. et al. Functional applications of novel Semliki Forest virus vectors are limited by vector toxicity in cultures of primary neurons in vitro and in the substantia nigra in vivo. Exp Brain Res 161, 335–342 (2005). https://doi.org/10.1007/s00221-004-2077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2077-9

Keywords

Navigation