Skip to main content
Log in

The time course for kinetic versus kinematic planning of goal-directed human motor behavior

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The present psychophysical study compares motor planning during goal-directed reaching movements and isometric spatial force generation. Our objective is to characterize the extent to which the motor system accounts for the biomechanical details of an impending reach. One issue that the nervous system must take into account when transforming a spatial sensory signal into an intrinsic pattern of joint torques is that of limb dynamics, including intersegmental dynamics and inertial anisotropy of the arm. These will act to displace the hand away from a straight path to an object. In theory, if the nervous system accounts for movement-related limb dynamics prior to its initial motor output, early force direction for a movement will differ from an isometric force to the same spatial target. Alternatively, biomechanical details of motor behavior may be implemented into the motor act following its initiation. Limb position and force output at the wrist were recorded while subjects displaced a cursor to targets viewed on a computer monitor. To generate isometric forces, a magnetic brake held a mechanical linkage supporting the arm in place. Subjects were cued to displace the cursor by using either isometric force or limb movement. On random trials, a movement was cued but an isometric force was unexpectedly required. Results show that there is not a significant directional difference in the initial force trajectory when planning a movement versus planning an isometric force. These findings suggest that the motor system may initially use a coarse approximation of movement-related limb dynamics, allowing for the refinement of the motor plan as the movement unfolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3
Fig. 4a–f
Fig. 5a, b
Fig. 6
Fig. 7a–c
Fig. 8a–c
Fig. 9a–c

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    CAS  PubMed  Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5:2318–2330

    CAS  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London, Toronto

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  CAS  PubMed  Google Scholar 

  • Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560

    CAS  PubMed  Google Scholar 

  • Cordo PJ, Flanders M (1989) Sensory control of target acquisition. Trends Neurosci 12:110–117

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997) Constrained and unconstrained movements involve different control strategies. J Neurophysiol 77:1644–1650

    CAS  PubMed  Google Scholar 

  • Dizio P, Lackner JR (1995) Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J Neurophysiol 74:1787–1792

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Lolley S (2001) The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci 21:1361–1369

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M (1999) Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci 19: RC34

    CAS  PubMed  Google Scholar 

  • Flanders M, Pellegrini JJ, Geisler SD (1996) Basic features of phasic activation for reaching in vertical planes. Exp Brain Res 110:67–79

    CAS  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  • Flash T, Sejnowski TJ (2001) Computational approaches to motor control. Curr Opin Neurobiol 11:655–662

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Massey JT (1988) Cognitive spatial-motor processes. 2. Information transmitted by the direction of two-dimensional arm movements and by neuronal populations in primate motor cortex and area 5. Exp Brain Res 69:315–326

    CAS  PubMed  Google Scholar 

  • Ghez C, Sainburg R (1995) Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol 73:273–284

    CAS  PubMed  Google Scholar 

  • Ghez C, Shinoda Y (1978) Spinal mechanisms of the functional stretch reflex. Exp Brain Res 32:55–68

    CAS  PubMed  Google Scholar 

  • Ghilardi MF, Gordon J, Ghez C (1995) Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. J Neurophysiol 73:2535–2539

    CAS  PubMed  Google Scholar 

  • Gielen CC, van Zuylen EJ (1986) Coordination of arm muscles during flexion and supination: application of the tensor analysis approach. Neuroscience 17:527–539

    Article  CAS  PubMed  Google Scholar 

  • Gielen CC, Ramaekers L, van Zuylen EJ (1988) Long-latency stretch reflexes as co-ordinated functional responses in man. J Physiol 407:275–292

    CAS  PubMed  Google Scholar 

  • Goodbody SJ, Wolpert DM (1999) The effect of visuomotor displacements on arm movement paths. Exp Brain Res 127:213–223

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994) Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130

    Google Scholar 

  • Gottlieb GL (1996) On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. J Neurophysiol 76:3207–3229

    CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (1999) Compensation for interaction torques during single- and multijoint limb movement. J Neurophysiol 82:2310–2326

    CAS  PubMed  Google Scholar 

  • Hollerbach MJ, Flash T (1982) Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77

    CAS  PubMed  Google Scholar 

  • Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166

    CAS  PubMed  Google Scholar 

  • Hoy MG, Zernicke RF (1986) The role of intersegmental dynamics during rapid limb oscillations. J Biomech 19:867–877

    Article  CAS  PubMed  Google Scholar 

  • Kalaska JF, Sergio LE, Cisek P (1998) Cortical control of whole-arm motor tasks. Novartis Found Symp 218:176–190; discussion 190–201

    CAS  PubMed  Google Scholar 

  • Karst GM, Hasan Z (1991) Initiation rules for planar, two-joint arm movements: agonist selection for movements throughout the work space. J Neurophysiol 66:1579–1593

    CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Wolpert D (1998) Internal models for motor control. Novartis Found Symp 218:291–304; discussion 304–297

    CAS  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    CAS  PubMed  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, London

  • Miall R, Haggard P (1995) The curvature of human arm movements in the absence of visual experience. Exp Brain Res 103:421–428

    CAS  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    PubMed  Google Scholar 

  • Osu R, Uno Y, Koike Y, Kawato M (1997) Possible explanations for trajectory curvature in multijoint arm movements. J Exp Psychol Hum Percept Perform 23:890–913

    Article  CAS  PubMed  Google Scholar 

  • Petersen N, Christensen LO, Morita H, Sinkjaer T, Nielsen J (1998) Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol 512:267–276

    CAS  PubMed  Google Scholar 

  • Ramsay JO, Silverman BW (1997) Functional data analysis. Springer, New York

  • Sabes PN (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10:740–746

    Article  CAS  PubMed  Google Scholar 

  • Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70:2136–2147

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    CAS  PubMed  Google Scholar 

  • Scott SH (1999) Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods 89:119–127

    Article  CAS  PubMed  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol 77:826–852

    CAS  PubMed  Google Scholar 

  • Sergio LE, Kalaska JF (1998) Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task. J Neurophysiol 80:1577–1583

    CAS  PubMed  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89:212–228

    PubMed  Google Scholar 

  • Sergio LE, Scott SH (1998) Hand and joint paths during reaching movements with and without vision. Exp Brain Res 122:157–164

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Brashers-Krug T (1997) Functional stages in the formation of human long-term motor memory. J Neurosci 17:409–419

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19:8573–8588

    CAS  PubMed  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern 61:89–101

    CAS  PubMed  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New York

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1:209–216

    Article  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3[Suppl]: 1212–1217

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Romano Sulit, Taiwo McGregor, and Mauro Vesia for their technical assistance in developing the apparatus, Saihong Sun for her programming expertise, and Dr. Peter J. Keir and Dr. Douglas Crawford for their assistance with the manuscript. We are particularly grateful to Dr. Paul L. Gribble for his invaluable assistance with the two-joint limb model. This research was supported by the Natural Sciences and Engineering Research Council of Canada (#227220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren E. Sergio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesia, M., Vander, H., Yan, X. et al. The time course for kinetic versus kinematic planning of goal-directed human motor behavior. Exp Brain Res 160, 290–301 (2005). https://doi.org/10.1007/s00221-004-2011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2011-1

Keywords

Navigation