Skip to main content
Log in

Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When applied over the occipital pole, transcranial magnetic stimulation (TMS) disrupts visual perception and induces phosphenes. Both the underlying mechanisms and the brain structures involved are still unclear. The first part of the study characterizes the suppressive effect of TMS by psychophysical methods. Luminance increment thresholds for orientation discrimination were determined in four subjects using an adaptive staircase procedure. Coil position was controlled with a stereotactic positioning device. Threshold values were modulated by TMS, reaching a maximum effect at a stimulus onset asynchrony (SOA) of approx. 100 ms after visual target presentation. Stronger TMS pulses increased the maximum threshold while decreasing the SOA producing the maximum effect. Slopes of the psychometric function were flattened with TMS masking by a factor of 2, compared to control experiments in the absence of TMS. No change in steepness was observed in experiments using a light flash as the mask instead of TMS. Together with the finding that at higher TMS intensities, threshold elevation occurs even with shorter SOAs, this suggests lasting inhibitory processes as masking mechanisms, contradicting the assumption that the phosphene as excitatory equivalent causes masking. In the companion contribution to this one we present perimetric measurements and phosphene forms as a function of the stimulation site in the brain and discuss the putative generator structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458–462

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell AP, Eberle L (1993) Unmasking human visual perception with the magnetic coil and its relationship to hemispheric asymmetry. Brain Res 605:312–316

    Article  CAS  PubMed  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet I:1106–1107

    Article  Google Scholar 

  • Beckers G, Hömberg V (1991) Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex. Exp Brain Res 87:421–432

    CAS  PubMed  Google Scholar 

  • Beckers G, Zeki S (1995) The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118:49–60

    PubMed  Google Scholar 

  • Bolz J, Rosner G, Wässle H (1982) Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina. J Physiol (Lond) 382:171–190

    Google Scholar 

  • Corthout E, Uttl B, Walsh V, Hallett M, Cowey A (1999a) Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. Neuroreport 10:2631–2634

    CAS  PubMed  Google Scholar 

  • Corthout E, Uttl B, Ziemann U, Cowey A, Hallett M (1999b) Two periods of processing in the (circum) striate visual cortex as revealed by transcranial magnetic stimulation. Neuropsychologia 37:137–145

    Article  CAS  PubMed  Google Scholar 

  • Corthout E, Uttl B, Juan CH, Hallett M, Cowey A (2000) Suppression of vision by transcranial magnetic stimulation: a third mechanism. Neuroreport 11:2345–2349

    CAS  PubMed  Google Scholar 

  • Dorner-Schandl F, Durst W, Kolling G, Leo-Kottler B (1993) Rasterperimetrie mit dem Tübinger Automatik Perimeter. Universitäts-Augenklinik, Tübingen

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  CAS  PubMed  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  CAS  PubMed  Google Scholar 

  • Hotson J, Braun D, Herzberg W, Boman D (1994) Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vision Res 34:2115–2123

    Article  CAS  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol (Lond) 466:521–534

    Google Scholar 

  • Jaskowski P, Pruszewicz A, Swidzinski P (1990) VEP latency and some properties of simple motor reaction-time distribution. Psychol Res 52:28–34

    CAS  PubMed  Google Scholar 

  • Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Nusseck HG (1998) Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? Neuropsychologia 36:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Lehr L, Kirschfeld K (1999) Cortical visual processing is temporally dispersed by luminance in human subjects. Neurosci Lett 263:133–136

    Google Scholar 

  • Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans. A transcranial magnetic stimulation study comparing different pulseforms, current directions and stimulator types. Clin Neurophysiol 112:250–258

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Puls K, Erb M, Grodd W (2004) TMS in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res (accepted for publication)

  • Kesten H (1958) Accelerated stochastic-approximation. Ann Math Stat 29:41–59

    Google Scholar 

  • King-Smith PE, Rose D (1997) Principles of an adaptive method for measuring the slope of the psychometric function. Vision Res 37:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Kontsevich LL, Tyler CW (1999) Bayesian adaptive estimation of psychometric slope and threshold. Vision Res 39:2729–2737

    Article  CAS  PubMed  Google Scholar 

  • Lennie P (1981) The physiological basis of variations in visual latency. Vision Res 21:815–824

    Article  CAS  PubMed  Google Scholar 

  • Mansfield RJ (1973) Latency functions in human vision. Vision Res 13:2219–2234

    Article  CAS  PubMed  Google Scholar 

  • Masur H, Papke K, Oberwittler C (1993) Suppression of visual perception by transcranial magnetic stimulation—experimental findings in healthy subjects and patients with optic neuritis. Electroencephalogr Clin Neurophysiol 86:259–267

    Article  CAS  PubMed  Google Scholar 

  • Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68:1332–1344

    CAS  PubMed  Google Scholar 

  • Meyer BU, Diehl RR, Steinmetz H, Britton TC, Benecke R (1991) Magnetic stimuli applied over motor cortex and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr Clin Neurophysiol Suppl 43:121–134

    CAS  PubMed  Google Scholar 

  • Miller MB, Fendrich R, Eliassen JC, Demirel S, Gazzaniga MS (1996) Transcranial magnetic stimulation—delays in visual suppression due to luminance changes. Neuroreport 7:1740–1744

    CAS  PubMed  Google Scholar 

  • Moliadze V, Zhao Y, Eysel UT, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol (Lond) 553:665–679

    Google Scholar 

  • Osaka N, Yamamoto M (1978) VEP latency and RT as power functions of luminance in the peripheral visual field. Electroencephalogr Clin Neurophysiol 44:785–788

    Article  CAS  PubMed  Google Scholar 

  • Paulus W, Korinth S, Wischer S, Tergau F (1999) Differential inhibition of chromatic and achromatic perception by transcranial magnetic stimulation of the human visual cortex. Neuroreport 10:1245–1248

    CAS  PubMed  Google Scholar 

  • Strasburger H (2001) Invariance of the psychometric function for character recognition across the visual field. Percept Psychophys 63:1356–1376

    CAS  PubMed  Google Scholar 

  • Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503–2522

    Article  CAS  PubMed  Google Scholar 

  • Treutwein B, Strasburger H (1999) Fitting the psychometric function. Percept Psychophys 61:87–106

    CAS  PubMed  Google Scholar 

  • Vaughan HGJ, Costa LD, Gilden L (1966) The functional relation of visual evoked response and reaction time to stimulus intensity. Vision Res 6:645–656

    Article  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001a) The psychometric function. I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    CAS  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001b) The psychometric function. II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63:1314–1329

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandra Beck, Kuno Kirschfeld, and Hans-Günther Nusseck for support and for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammer, T., Puls, K., Strasburger, H. et al. Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression. Exp Brain Res 160, 118–128 (2005). https://doi.org/10.1007/s00221-004-1991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1991-1

Keywords

Navigation