Skip to main content
Log in

Regional brain variations of cytochrome oxidase activity in spontaneously hypertensive mice

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To explore the central disturbances resulting from blood pressure changes, spontaneously hypertensive mice (SHM) were compared to normotensive controls for cytochrome oxidase (CO) activity, an index of oxidative capacity in the central nervous system and a marker of long-term regional brain metabolism and neuronal activity. In all brain areas presenting significant enzymatic variations, only increases in CO activity were found in SHM, particularly the central autonomic network. However, only specific regions were affected, namely the insular cortex and the hypothalamic nuclei principally involved in high-order autonomic control. Altered limbic structures included the lateral septum, various hippocampal subregions, as well as prelimbic cortex. CO activity was also elevated in several forebrain regions, including those directly connected to the limbic system, such as the nucleus accumbens, the claustrum, and dorsomedial and reticular thalamic nuclei, as well as subthalamic and ventrolateral thalamic nuclei. In the brainstem, the only regions affected were the locus coeruleus, site of noradrenergic cell bodies, the trigeminal system, and four interconnected regions: the inferior colliculus, the paramedial reticular formation, the medial vestibular, and the cerebellar fastigial nuclei. These data show that specific regions modulating sympathetic nerve discharge are activated in young adult SHM, possibly due to mitochondrial dysfunction and excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen GV, Cechetto DF (1992) Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area. I. Descending projections. J Comp Neurol 15:313–332

    Google Scholar 

  • Allen GV, Cechetto DF (1993) Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area. II. Ascending projections. J Comp Neurol 15:421–438

    Google Scholar 

  • Aston-Jones G, Shipley M, Grzanna R (1995) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, New York, pp 183–213

  • Baumbach GL, Sigmund CD, Faraci FM (2003) Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension 41:50–55

    Article  CAS  PubMed  Google Scholar 

  • Bendel P, Eilam R (1992) Quantitation of ventricular size in normal and spontaneously hypertensive rats by magnetic resonance imaging. Brain Res 574:224–228

    Article  CAS  PubMed  Google Scholar 

  • Brezenoff HE (1972) Cardiovascular responses to intrahypothalamic injections of carbachol and certain cholinesterase inhibitors. Neuropharmacology 11:637–644

    Article  CAS  PubMed  Google Scholar 

  • Butcher KS, Cechetto DF (1998) Receptors in lateral hypothalamic area involved in insular cortex sympathetic responses. Am J Physiol 275:H689–H696

    CAS  PubMed  Google Scholar 

  • Choki J, Yamaguchi T, Takeya Y, Morotomi Y, Omae T (1977) Effect of carotid artery ligation on regional cerebral blood flow in normotensive and spontaneously hypertensive rats. Stroke 8:374–379

    CAS  PubMed  Google Scholar 

  • Delini-Stula A, Hunn C (1985) Neophobia in spontaneous hypertensive (SHR) and normotensive control (WKY) rats. Behav Neur Biol 43:206–211

    CAS  Google Scholar 

  • Fisk GD, Wyss JM (2000) Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res 859:83–95

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, New York

  • Fujishima M, Ibayashi S, Fujii K, Mori S (1995) Cerebral blood flow and brain function in hypertension. Hypertens Res 18:111–117

    CAS  PubMed  Google Scholar 

  • Gentsch C, Lichsteiner M, Feer H (1981) Locomotor activity, defecation score and corticosterone levels during an openfield exposure: a comparison among individually and group-housed rats, and genetically selected rat lines. Physiol Behav 27:183–186

    CAS  PubMed  Google Scholar 

  • Gentsch C, Lichsteiner M, Feer H (1987) Open field and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav Brain Res 25:101–107

    Article  CAS  PubMed  Google Scholar 

  • Geszteli G, Finnegan W, DeMaro JA, Wang J-Y, Chen J-L, Fenstermacher J (1993) Parenchymal microvascular systems and cerebral atrophy in spontaneously hypertensive rats. Brain Res 611:249–257

    Article  PubMed  Google Scholar 

  • Gonzalez-Lima F, Jones D (1994) Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry. Brain Res 660:34–39

    Article  CAS  PubMed  Google Scholar 

  • Haibara AS, Saad WA, Menani JV, Camargo LA, Renzi A (1994) Role of lateral hypothalamus on fluid, electrolyte, and cardiovascular responses to activation of the MSA. Am J Physiol 266:R496–R502

    CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Sowa TE (1984) Hypothalamocerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers and affective behavior. Brain Behav Evol 24:198–220

    CAS  PubMed  Google Scholar 

  • Hamet P, Richard L, Dam T-V, Teiger E, Orlov SN, Gaboury F, Tremblay J (1995) Apoptosis in target organs of hypertension. Hypertension 26:642–648

    CAS  PubMed  Google Scholar 

  • Harper SL, Bohlen HG (1984) Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 6:408–419

    CAS  PubMed  Google Scholar 

  • Hayashi T, Nakamura K (1981) Cerebral neuronal activity in spontaneously hypertensive rats as demonstrated by the 14C-deoxyglucose method. Naunyn-Schmiedebergs Arch Pharmacol 316:331–339

    Google Scholar 

  • Heimer L, Zahm DS, Alheid GF (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, New York, pp 579–628

  • Hess HH, Pope A (1953) Ultramicrospectrophotometric determination of cytochrome oxidase for quantitative histochemistry. J Biol Chem 204:295–306

    CAS  PubMed  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276

    CAS  PubMed  Google Scholar 

  • Iadecola C, Springston ME, Reis DJ (1990) Dissociation by chloralose of the cardiovascular and cerebrovascular responses evoked from the cerebellar fastigial nucleus. J Cerebr Blood Flow Metab 10:375–382

    CAS  Google Scholar 

  • Kadekaro M, Savaki HE, Kutyna FA, Davidsen L, Sokoloff L (1983) Metabolic mapping in the sympathetic ganglia and brain of the spontaneously hypertensive rat. J Cereb Blood Flow Metab 3:460–467

    CAS  PubMed  Google Scholar 

  • Katsuta T (1997) Decreased local cerebral blood flow in young and aged spontaneously hypertensive rats. Fukuoka Igaku Zasshi 88:65–74

    CAS  PubMed  Google Scholar 

  • Kim S-J, Ko KH (1998) Abnormal central serotonergic activities in spontaneously hypertensive rats (SHR). Methods Find Exp Clin Pharmacol 20:473–478

    CAS  PubMed  Google Scholar 

  • Kimoto-Kinoshita S, Nishida S, Tomura TT (1999) Age-related change of antioxidant capacities in the cerebral cortex and hippocampus of stroke-prone spontaneously hypertensive rats. Neurosci Lett 273:41–44

    Article  CAS  PubMed  Google Scholar 

  • Krukoff TL (1998) Central regulation of autonomic function: no brakes? Clin Exp Pharmacol Physiol 25:474–478

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Sakaguchi A, Reis DJ (1982) Behaviorally selective cardiovascular hyperactivity in spontaneously hypertensive rats: evidence for hypoemotionality and enhanced appetitive motivation. Hypertension 4:853–863

    CAS  PubMed  Google Scholar 

  • Malo D, Schlager G, Tremblay J, Hamet P (1989) Thermosensitivity, a possible new locus involved in genetic hypertension. Hypertension 14:121–128

    CAS  PubMed  Google Scholar 

  • Mori S, Kato M, Fujishima M (1995) Impaired maze learning and cerebral glucose utilization in aged hypertensive rats. Hypertension 25:545–553

    CAS  PubMed  Google Scholar 

  • Nelson DO, Boulant JA (1981) Altered CNS neuroanatomical organization of spontaneously hypertensive (SHR) rats. Brain Res 226:119–130

    Article  CAS  PubMed  Google Scholar 

  • Nordborg C, Johansson BB (1980) Morphometric study on cerebral vessels in spontaneously hypertensive rats. Stroke 11:266–270

    CAS  PubMed  Google Scholar 

  • Nordborg C, Frederiksson K, Johansson BB (1985) The morphometry of consecutive segments in cerebral arteries of normotensive and spontaneously hypertensive rats. Stroke 16:313–320

    CAS  PubMed  Google Scholar 

  • Oppenheimer S (1993) The anatomy and physiology of cortical mechanisms of cardiac control. Stroke 24:13–15

    Google Scholar 

  • Oppenheimer SM, Saleh T, Cechetto DF (1992) Lateral hypothalamic area neurotransmission and neuromodulation of the specific cardiac effects of insular cortex stimulation. Brain Res 581:133–142

    Article  CAS  PubMed  Google Scholar 

  • Reader TA, Strazielle C (1999) Quantitative autoradiography of monoamine uptake sites and receptors in rat and mouse brain. In: Boulton AA, Baker GB, Bateson AN (eds) Neuromethods, vol 33, Cell neurobiology techniques. Humana Press, Totowa, pp 1–51

  • Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195

    Article  CAS  PubMed  Google Scholar 

  • Ritter S, Dinh TT (1986) Progressive postnatal dilation of brain ventricles in spontaneously hypertensive rats. Brain Res 370:327–332

    Article  CAS  PubMed  Google Scholar 

  • Ritter S, Dinh TT, Stone S, Ross N (1988) Cerebroventricular dilation in spontaneously hypertensive rats (SHRs) is not attenuated by reduction of blood pressure. Brain Res 450:354–359

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (1995) Central autonomic system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, New York, pp 107–115

  • Schlager G (1966) Systolic blood pressure in 8 inbred strains of mice. Nature 212:519–520

    CAS  PubMed  Google Scholar 

  • Schlager G (1981) The genetically hypertensive mouse. Trends Arter Hypertens 17:321–331

    Google Scholar 

  • Schlager G, Freeman R, Sustarsic SS (1979) Brain catecholamines and organ weight of mice genetically selected for high and low blood pressure. Experientia 35:67–69

    CAS  PubMed  Google Scholar 

  • Sladek CD, Blair ML (1984) Cholinergic stimulation of vasopressin release in spontaneously hypertensive rats. Hypertension 6:855–860

    CAS  PubMed  Google Scholar 

  • Strazielle C, Krémarik P, Ghersi-Egea J-F, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45

    Article  CAS  PubMed  Google Scholar 

  • Strazielle C, Sturchler-Pierrat C, Staufenbiel M, Lalonde R (2003) Regional brain cytochrome oxidase activity in β-amyloid precursor protein transgenic mice with the Swedish mutation. Neuroscience 118:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Takenaka K, Sasaki S, Uchida A, Fujita H, Nakamura K, Ichida T, Itoh H, Nakata T, Takeda K, Nakagawa M (1996) GABAB-ergic stimulation in hypothalamic pressor area induces larger sympathetic and cardiovascular depression in spontaneously hypertensive rats. Am J Hypertens 9:964–972

    Article  CAS  PubMed  Google Scholar 

  • Thifault S, Lalonde R, Hamet P (1999) Neurobehavioral evaluation of high blood pressure and low blood pressure mice. Psychobiology 27:415–425

    Google Scholar 

  • Thifault S, Lalonde R, Sanon N, Hamet P (2001) Longitudinal analysis of motor activity and coordination, anxiety, and spatial learning in mice with altered blood pressure. Brain Res 910:99–105

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Fujii K, Ibayashi S, Kitazono T, Nagao T, Takaba H, Fujishima M (1998) Attenuation and recovery of brain stem autoregulation in spontaneously hypertensive rats. J Cerebr Blood Flow Metab 18:305–310

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Sved AF, Ito S, Komatsu K, Kanmatsuse K (2000) Enhanced serotonin-mediated responses in the nucleus tractus solitarius of spontaneously hypertensive rats. Brain Res 863:1–8

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Kumon Y, Ohta S, Sakaki S, Matsuda S, Sakanaka M (1998) Changes in protein synthesis and calcium homeostasis in the thalamus of spontaneously hypertensive rats with focal cerebral ischemia. J Cereb Blood Flow Metab 18:686–696

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Lin S-Z, Tajima A, Nakata H, Acuff V, Patlak C, Pettigrew K, Fenstermacher J (1992) Cerebral glucose utilization and blood flow in adult spontaneously hypertensive rats. Hypertension 20:501–510

    CAS  PubMed  Google Scholar 

  • Wible JH, Luft FC, DiMicco JA (1988) Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system. Am J Physiol 254:R680–R687

    CAS  PubMed  Google Scholar 

  • Wong-Riley MTT (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    CAS  PubMed  Google Scholar 

  • Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    CAS  PubMed  Google Scholar 

  • Yasui Y, Breder CD, Saper CB, Cechetto DF (1991) Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol 303:355–374

    CAS  PubMed  Google Scholar 

  • Zilles K, Wree A (1995) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, New York, pp 649–685

  • Zou C-J, Gu Y-H (1992) Functional connections between the pressor responses induced by glutamate injection into habenula and lateral septum. Chin J Physiol Sci 8:300–308

    Google Scholar 

Download references

Acknowledgements.

This study was supported by a Canadian Institute of Health Research grant to P.H. S.T. received a doctoral scholarship during the course of this study from the Canadian Heart and Stroke Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Strazielle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strazielle, C., Lalonde, R., Thifault, S. et al. Regional brain variations of cytochrome oxidase activity in spontaneously hypertensive mice. Exp Brain Res 157, 255–264 (2004). https://doi.org/10.1007/s00221-004-1841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1841-1

Keywords

Navigation