Skip to main content
Log in

Glutamate, but not aspartate, is enriched in trigeminothalamic tract terminals and associated with their synaptic vesicles in the rat nucleus submedius

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To examine the possible roles of glutamate and aspartate as neurotransmitters in the nucleus submedius (Sm) of rats, the distributions of these amino acids were examined by electron microscopic immunogold labeling. High levels of glutamate were detected in trigeminothalamic tract terminals anterogradely labeled with horseradish peroxidase conjugates. These terminals also displayed a positive correlation between the densities of synaptic vesicles and gold particles signaling glutamate. In contrast, aspartate levels in such terminals were low and displayed no correlation with the density of synaptic vesicles. Terminals of presumed cortical origin contained the highest estimated levels of glutamate, but the positive correlation between glutamate signal and synaptic vesicle density did not reach statistical significance, presumably due to technical factors. The latter terminals also contained relatively high levels of aspartate, though without any correlation to synaptic vesicle density. The present findings provide strong support for glutamate, but not aspartate, as a trigeminothalamic tract neurotransmitter responsible for the fast synaptic transmission of nociceptive signals to neurons in the rat nucleus submedius. Aspartate presumably serves metabolic roles in these terminals. With respect to terminals of presumed cortical origin, our data are not at odds with the notion that also these terminals use glutamate as their neurotransmitter. Our findings do not support a neurotransmitter role for aspartate in the latter terminals, although such a role cannot be entirely refuted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellocchio E, Reimer R, Fremeau R, Edwards R (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  • Blackstad TW, Karagülle T, Ottersen OP (1990) Morforel, a computer program for two-dimensional analysis of micrographs of biological specimens, with emphasis on immunogold preparations. Comput Biol Med 20:15–34

    CAS  PubMed  Google Scholar 

  • Blomqvist A, Ericson A-C, Craig AD, Broman J (1996) Evidence for glutamate as a neurotransmitter in spinothalamic tract terminals in the posterior region of owl monkeys. Exp Brain Res 108:33–44

    CAS  PubMed  Google Scholar 

  • Broman J (1994) Neurotransmitters in subcortical somatosensory pathways. Anat Embryol 189:181–214

    CAS  PubMed  Google Scholar 

  • Broman J, Ådahl F (1994) Evidence for vesicular storage of glutamate in primary afferent terminals. Neuroreport 5:1801–1804

    CAS  PubMed  Google Scholar 

  • Broman J, Ottersen OP (1992) Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J Neurosci 12:204–221

    CAS  PubMed  Google Scholar 

  • Broman J, Anderson S, Ottersen OP (1993) Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn. Eur J Neurosci 5:1050–1061

    CAS  PubMed  Google Scholar 

  • Broman J, Hassel B, Rinvik E, Ottersen OP (2000) Biochemistry and anatomy of transmitter glutamate. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical neuroanatomy, vol 18, glutamate. Elsevier, Amsterdam, pp 1–44

  • Coffield JA, Bowen KK, Miletic V (1992) Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat. J Comp Neurol 321:488–499

    CAS  PubMed  Google Scholar 

  • Craig AD (1987) Medial thalamus and nociception: the nucleus submedius. In: Besson J-M, Guilbaud G, Peschanski M (eds) Thalamus and pain. Elsevier, Amsterdam, pp 227–243

  • Craig AD, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45:443–466

    PubMed  Google Scholar 

  • Craig AD Jr, Wiegand SJ, Price JL (1982) The thalamo-cortical projection of the nucleus submedius in the cat. J Comp Neurol 206:28–48

    PubMed  Google Scholar 

  • Dado RJ, Giesler GJ Jr (1990) Afferent input to nucleus submedius in rats: retrograde labeling of neurons in the spinal cord and caudal medulla. J Neurosci 10:2672–2686

    CAS  PubMed  Google Scholar 

  • De Biasi S, Amadeo A, Spreafico R, Rustioni A (1994) Enrichment of glutamate immunoreactivity in lemniscal terminals in the ventropostero lateral thalamic nucleus of the rat: an immunogold and WGA-HRP study. Anat Rec 240:131–140

    PubMed  Google Scholar 

  • Dostrovsky JO, Guilbaud G (1988) Noxious stimuli excite neurons in the nucleus submedius of the normal and arthritic rat. Brain Res 460:269–280

    CAS  PubMed  Google Scholar 

  • Dostrovsky JO, Guilbaud G (1990) Nociceptive responses in medial thalamus of the normal and arthritic rat. Pain 40:93–104

    CAS  PubMed  Google Scholar 

  • Ericson A-C, Blomqvist A, Craig AD, Ottersen OP, Broman J (1995) Evidence for glutamate as neurotransmitter in trigemino- and spinothalamic tract terminals in the nucleus submedius of cats. Eur J Neurosci 7:305–317

    CAS  PubMed  Google Scholar 

  • Fremeau R, Troyer M, Pahner I, Nygaard G, Tran C, Reimer R, Bellocchio E, Fortin D, Storm-Mathisen J, Edwards R (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudry FA, Edwards RH (2002) The identification of glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A 99:14488–14493

    Article  CAS  PubMed  Google Scholar 

  • Fu J-J, Tang J-S, Yuan B, Jia H (2002) Response of neurons in the thalamic nucleus submedius (Sm) to noxious stimulation and electrophysiological identification of on- and off-cells in rats. Pain 99:243–251

    PubMed  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    CAS  PubMed  Google Scholar 

  • Gundersen V, Chaudry FA, Bjaalie JG, Fonnum F, Ottersen OP, Storm-Mathisen J (1998) Synaptic vesicular localization and exocytosis of l-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18:6059–6070

    CAS  PubMed  Google Scholar 

  • Hamlin L, Mackerlova L, Blomqvist A, Ericson A-C (1996) AMPA-selective glutamate receptor subunits and their relation to glutamate- and GABA-like immunoreactive terminals in the nucleus submedius of the rat. Neurosci Lett 217:149–152

    CAS  PubMed  Google Scholar 

  • Hamori J, Takacs J, Verley R, Petrusz P, Farkas-Bargeton E (1990) Plasticity of GABA- and glutamate-containing terminals in the mouse thalamic ventrobasal complex deprived of vibrissal afferents: an immunogold-electron microscopic study. J Comp Neurol 302:739–748

    CAS  PubMed  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    CAS  PubMed  Google Scholar 

  • Iwata K, Kenshalo DR Jr, Dubner R, Nahin RL (1992) Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol 321:404–420

    CAS  PubMed  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

  • Jones EG (1998) The thalamus of primates. In: Bloom FE, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 14, The primate nervous system, part II. Elsevier, Amsterdam, pp 1–298

  • Larsson M, Persson S, Ottersen OP, Broman J (2001) Quantitative analysis of immunogold labeling indicates low levels and non-vesicular localization of l-aspartate in rat primary afferent terminals. J Comp Neurol 430:147–159

    CAS  PubMed  Google Scholar 

  • Ma W, Ohara PT (1987) Synaptic glomeruli in the nucleus submedius of the rat thalamus. Brain Res 415:331–336

    CAS  PubMed  Google Scholar 

  • Ma W, Peschanski M, Ohara PT (1988) Fine structure of the dorsal part of the nucleus submedius of the rat thalamus: an anatomical study with reference to possible pain pathways. Neuroscience 26:147–159

    CAS  PubMed  Google Scholar 

  • Maxwell DJ, Christie WM, Short AD, Storm-Mathisen J, Ottersen OP (1990) Central boutons of glomeruli in the spinal cord of the cat are enriched with l-glutamate-like immunoreactivity. Neuroscience 36:83–104

    CAS  PubMed  Google Scholar 

  • Miletic V, Coffield JA (1989) Responses of neurons in the rat nucleus submedius to noxious and innocuous mechanical cutaneous stimulation. Somatosens Mot Res 6:567–587

    CAS  PubMed  Google Scholar 

  • Montero VM (1990) Quantitative immunogold analysis reveals high glutamate levels in synaptic terminals of retino-geniculate, cortico-geniculate and geniculocortical axons in the cat. Vis Neurosci 4:437–443

    CAS  PubMed  Google Scholar 

  • Montero VM (1994) Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. Vis Neurosci 11:675–681

    CAS  PubMed  Google Scholar 

  • Montero VM, Wenthold RJ (1989) Quantitative immunogold analysis reveals high glutamate levels in retinal and cortical synaptic terminals in the lateral geniculate nucleus of the macaque. Neuroscience 31:639–647

    CAS  PubMed  Google Scholar 

  • Ottersen OP (1987) Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing. Exp Brain Res 69:167–174

    CAS  PubMed  Google Scholar 

  • Ottersen OP (1989) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2:57–66

    CAS  PubMed  Google Scholar 

  • Özkan ED, Ueda T (1998) Glutamate transport and storage in synaptic vesicles. Jpn J Pharmacol 77:1–10

    Article  PubMed  Google Scholar 

  • Ralston HJ III (1985) The fine structure of the ventrobasal thalamus of the monkey and cat. Brain Res Rev 9:228–241

    Google Scholar 

  • Roberts VJ, Dong WK (1994) The effect of thalamic nucleus submedius lesions on nociceptive responding in rats. Pain 57:341–349

    CAS  PubMed  Google Scholar 

  • Rustioni A, Weinberg RJ (1989) The somatosensory system. In: Björklund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 7, integrated systems of the CNS, part II. Elsevier, Amsterdam, pp 219–321

  • Schäfer MK-H, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of a mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    Article  PubMed  Google Scholar 

  • Snow PJ, Lumb BM, Cervero F (1992) The representation of prolonged and intense, noxious somatic and visceral stimuli in the ventrolateral orbital cortex of the cat. Pain 48:89–99

    CAS  PubMed  Google Scholar 

  • Takamori S, Malherbe P, Broger C, Jahn R (2002) Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Reports 3:798–803

    CAS  PubMed  Google Scholar 

  • Valtschanoff J, Phend KD, Bernardi PS, Weinberg RJ, Rustioni A (1994) Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn. J Comp Neurol 346:237–252

    CAS  PubMed  Google Scholar 

  • Varoqui H, Schäfer MK-H, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155

    CAS  PubMed  Google Scholar 

  • Williams MN, Zahm DS, Jacquin MF (1994) Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. Eur J Neurosci 6:429–453

    CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Sessle BJ, Chiang CY (1991) Trigeminal projections to the nucleus submedius of the thalamus in the rat. J Comp Neurol 307:609–625

    CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Chiang CY (1992) The afferent and efferent connections of the nucleus submedius in the rat. J Comp Neurol 324:115–133

    CAS  PubMed  Google Scholar 

  • Zhang N, Storm-Mathisen J, Ottersen OP (1993) Specificity testing and antigen quantitation in postembedding immunogold cytochemistry: single and double labelling electron microscopy of neuroactive amino acids. Neurosci Protocols 1:93–050–13

    Google Scholar 

  • Zhang S, Tang JS, Yuan B, Jia H (1999) Electrically-evoked inhibitory effects of the nucleus submedius on the jaw-opening reflex are mediated by the ventrolateral orbital cortex and periaqueductal gray matter in the rat. Neuroscience 92:867–875

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swedish Research Council (Project No. 14276), Crafoordska Stiftelsen and Thorsten och Elsa Segerfalks Stiftelse. We are grateful to Dr. Ole Petter Ottersen for a generous supply of antisera and graded sections, and Agneta Persson and Rita Wallén for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Broman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, S., Broman, J. Glutamate, but not aspartate, is enriched in trigeminothalamic tract terminals and associated with their synaptic vesicles in the rat nucleus submedius. Exp Brain Res 157, 152–161 (2004). https://doi.org/10.1007/s00221-004-1837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1837-x

Keywords

Navigation