Skip to main content
Log in

Governing coordination: behavioural principles and neural correlates

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The coordination of movement is governed by a coalition of constraints. The expression of these constraints ranges from the concrete—the restricted range of motion offered by the mechanical configuration of our muscles and joints; to the abstract—the difficulty that we experience in combining simple movements into complex rhythms. We seek to illustrate that the various constraints on coordination are complementary and inclusive, and the means by which their expression and interaction are mediated systematically by the integrative action of the central nervous system (CNS). Beyond identifying the general principles at the behavioural level that govern the mutual interplay of constraints, we attempt to demonstrate that these principles have as their foundation specific functional properties of the cortical motor systems. We propose that regions of the brain upstream of the motor cortex may play a significant role in mediating interactions between the functional representations of muscles engaged in sensorimotor coordination tasks. We also argue that activity in these “supramotor” regions may mediate the stabilising role of augmented sensory feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awh E, Gehring WJ (1999) The anterior cingulate cortex lends a hand in response selection. Nat Neurosci 2:853–854

    Article  CAS  PubMed  Google Scholar 

  • Banati RB, Goerres GW, Tjoa C, Aggleton JP, Grasby P (2000) The functional anatomy of visual-tactile integration in man: a study using positron emission tomography. Neuropsychologia 38:115–124

    Article  PubMed  Google Scholar 

  • Blinkenberg M, Bonde C, Holm S et al. (1996) Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. J Cereb Blood Flow Metab 16:794–803

    CAS  PubMed  Google Scholar 

  • Carroll TJ, Barry B, Riek S, Carson RG (2001) Resistance training enhances the stability of sensori-motor coordination. Proc R Soc Lond B 268:221–227

    CAS  PubMed  Google Scholar 

  • Carroll TJ, Riek S, Carson RG (2002) The sites of neural adaptation induced by resistance training in humans. J Physiol (Lond) 544:641–652

    Google Scholar 

  • Carson RG (1996) Neuromuscular-skeletal constraints upon the dynamics of perception-action coupling. Exp Brain Res 110:99–110

    CAS  PubMed  Google Scholar 

  • Carson RG (in press) Governing coordination: why do muscles matter? In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: issues and trends. Springer-Verlag, Berlin

  • Carson RG, Riek S (1998a) The influence of joint position on the dynamics of perception-action coupling. Exp Brain Res 121:103–114

    CAS  PubMed  Google Scholar 

  • Carson RG, Riek S (1998b) Moving beyond phenomenology: neuromuscular-skeletal constraints on coordination dynamics. In: Piek JP (ed) Motor control and human skill: a multidisciplinary perspective. Human Kinetics, Champagne, IL, pp 209–230

  • Carson RG, Riek S (2001) Changes in muscle recruitment patterns during skill acquisition. Exp Brain Res 138:71–87

    CAS  PubMed  Google Scholar 

  • Carson RG, Chua R, Byblow WD, Poon P, Smethurst CJ (1999) Changes in posture alter the attentional demands of voluntary movement. Proc R Soc Lond B 266:853–857

    CAS  PubMed  Google Scholar 

  • Carson RG, Riek S, Shahbazpour N (2002) Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol (Lond) 539:913–925

    Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    CAS  PubMed  Google Scholar 

  • Chefer SI, Talan MI, Engel BT (1997) Central neural correlates of learned heart rate control during exercise: central command demystified. J Appl Physiol 83:1448–1453

    CAS  PubMed  Google Scholar 

  • Chen Y, Ding M, Kelso JAS (2003) Task-related power and coherence changes in neuromagnetic activity during visuomotor coordination. Exp Brain Res 148:105–116

    Article  PubMed  Google Scholar 

  • Cheney PD, Fetz EE, Mewes K (1991) Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res 87:213–252

    CAS  PubMed  Google Scholar 

  • Dai TH, Liu JZ, Sahgal V, Brown RW, Yue GH (2001) Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Res 140:290–300

    Article  CAS  Google Scholar 

  • Dassonville P, Lewis SM, Zhu X-H, Uğurbil K, Kim S-G, Ashe J (1998) Effects of movement predictability on cortical motor activation. Neurosci Res 32:65–74

    Article  CAS  PubMed  Google Scholar 

  • Dettmers C, Fink GR, Lemon RN, Klaus MS et al. (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74:802–815

    CAS  PubMed  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306

    PubMed  Google Scholar 

  • Dreher JC, Grafman J (2003) Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cereb Cortex 13:329–339

    Article  PubMed  Google Scholar 

  • Erdler M, Beisteiner R, Mayer D et al. (2000) Supplementary motor area activation preceding voluntary movement is detected with a whole-scalp magnetoencephalography system. Neuroimage 11:697–707

    Article  CAS  PubMed  Google Scholar 

  • Feige B, Aertsen A, Kristeva-Feige R (2000) Dynamic synchronization between multiple cortical motor areas and muscle activity in phasic voluntary movements. J Neurophysiol 84:2622–2629

    CAS  PubMed  Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37:481–494

    CAS  PubMed  Google Scholar 

  • Feldman AG, Levin MF, Mitnitski AM, Archambault P (1998) 1998 ISEK Congress Keynote Lecture: multi-muscle control in human movements. International Society of Electrophysiology and Kinesiology. J Electromyogr Kinesiol 8:383–390

    CAS  PubMed  Google Scholar 

  • Forster B, Cavina-Pratesi C, Aglioti SM, Berlucchi G (2002) Redundant target effect and intersensory facilitation from visual-tactile interactions in simple reaction time. Exp Brain Res 143:480–487

    Article  PubMed  Google Scholar 

  • Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res 10:77–83

    CAS  PubMed  Google Scholar 

  • Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS (2000) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12:71–84

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ, Fencsik DE (2001) Functions of the medial frontal cortex in the processing of conflict and errors. J Neurosci 21:9430–9437

    CAS  PubMed  Google Scholar 

  • Giray M, Ulrich R (1993) Motor coactivation revealed by response force in divided and focussed attention. J Exp Psychol Hum 19:1278–1291

    CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sacromere length in vertebrate muscles. J Physiol (Lond) 184:170–192

    Google Scholar 

  • Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851

    CAS  PubMed  Google Scholar 

  • Hager-Ross C, Schieber MH (2000) Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J Neurosci 20:8542–8550

    PubMed  Google Scholar 

  • Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293

    CAS  PubMed  Google Scholar 

  • Hufnagel A, Jaeger M, Elger CE (1990) Transcranial magnetic stimulation: specific and non-specific facilitation of magnetic motor evoked potentials. J Neurol 237:416–419

    CAS  PubMed  Google Scholar 

  • Humphrey DR (1986) Representation of movements and muscles within the primate precentral motor cortex: historical and current perspectives. Fed Proc 45:2687–2699

    CAS  PubMed  Google Scholar 

  • Jantzen KJ, Fuchs A, Mayville JM, Deecke L, Kelso JAS (2001) Neuromagnetic activity in alpha and beta bands reflect learning-induced increases in coordinative stability. Clin Neurophysiol 112:1685–1697

    Article  CAS  PubMed  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS (1994) The informational character of self-organized coordination dynamics. Hum Mov Sci 13:393–413

    Article  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, Scholz JP, Schöner G (1988) Dynamics governs switching among patterns of coordination in biological movement. Phys Lett A 134:8–12

    Article  Google Scholar 

  • Kelso JAS, Delcolle JD, Schöner GS (1990) Action-perception as a pattern formation process. In: Jeannerod M (ed) Attention and performance XIII. Erlbaum, Hillsdale, New Jersey, pp 139–169

  • Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T (1992) A phase transition in human brain and behavior. Phys Lett A 169:134–144

    Article  Google Scholar 

  • Kelso JAS, Buchanan JJ, DeGuzman GC, Ding M (1993) Spontaneous recruitment and annihilation of degrees of freedom in biological coordination. Phys Lett A 179:364–368

    Article  Google Scholar 

  • Kelso JAS, Fuchs A, Lancaster R et al. (1998) Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392:814–818

    CAS  PubMed  Google Scholar 

  • Kelso JAS, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordinated movement. Proc R Soc Lond B 268:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Kinsbourne M, Hicks RE (1978) Mapping functional cerebral space: competition and collaboration in human performance. In: Kinsbourne M (ed) Asymmetrical function of the brain. Cambridge University Press, Cambridge, pp 267–273

  • Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Arch 284:1–17

    CAS  Google Scholar 

  • Koski L, Paus T (2000) Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain mapping meta-analysis. Exp Brain Res 133:55–65

    Article  CAS  PubMed  Google Scholar 

  • Lemon R (1988) The output map of the primate motor cortex. Trends Neurosci 11:501–506

    CAS  PubMed  Google Scholar 

  • Lestienne FG, Thullier F, Archambault P, Levin MF, Feldman AG (2000) Multi-muscle control of head movements in monkeys: the referent configuration hypothesis. Neurosci Lett 283:65–68

    Article  CAS  PubMed  Google Scholar 

  • Levin MF (2000) Sensorimotor deficits in patients with central nervous system lesions: explanations based on the λ model of motor control. Hum Mov Sci 19:107–137

    Article  Google Scholar 

  • Levin MF, Selles RW, Verheul MH, Meijer OG (2000) Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control. Brain Res 853:352–369

    Article  CAS  PubMed  Google Scholar 

  • Liu JZ, Dai TH, Sahgal V, Brown RW, Yue GH (2002) Nonlinear cortical modulation of muscle fatigue: a functional MRI study. Brain Res 957:320–329

    Article  CAS  PubMed  Google Scholar 

  • Lorenzano C, Gilio F, Inghilleri M, Conte A, Fofi L, Manfredi M, Berardelli A (2002) Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Exp Brain Res 147:186–192

    Article  CAS  PubMed  Google Scholar 

  • Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224

    PubMed  Google Scholar 

  • Mayville JM, Bressler SL, Fuchs A, Kelso JAS (1999) Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127:371–381

    CAS  PubMed  Google Scholar 

  • Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS (2002) Cortical and subcortical networks during synchronization and syncopation tasks using functional MRI. Hum Brain Mapp 17:214–229

    Article  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    PubMed  Google Scholar 

  • Naito E, Kinomura S, Geyer S, Kawashima R, Roland PE, Zilles K (2000) Fast reaction to different sensory modalities activates common fields in motor areas, but anterior cingulate cortex is involved in the speed of reaction. J Neurophysiol 83:1701–1709

    CAS  PubMed  Google Scholar 

  • Palmer E, Ashby P (1992) Corticospinal projections to upper limb motoneurons in humans. J Physiol (Lond) 448:397–412

    Google Scholar 

  • Paulesu E, Harrison J, Baron-Cohen S, Watson JDG, Goldstein L, Heather J, Frackowiak RSJ, Frith CD (1995) The physiology of coloured hearing: a PET activation study of colour-word synaesthesia. Brain 118:661–676

    PubMed  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  CAS  PubMed  Google Scholar 

  • Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469

    CAS  PubMed  Google Scholar 

  • Paus T, Koski L, Zografos C, Westbury C (1998) Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 9:R37–R47

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    CAS  PubMed  Google Scholar 

  • Sams M, Aulanko T, Hamalainen H, Hari R, Lounasmaa OV, Lu DT, Simola J (1991) Seeing speech: visual information from lip movements modifies activity in the human auditory cortex. Neurosci Lett 127:141–145

    Article  CAS  PubMed  Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143

    CAS  PubMed  Google Scholar 

  • Schlaug G, Sanes JN, Thangaraj V, Darby DG, Jäncke L, Edelman RR, Warach S (1996) Cerebral activation covaries with movement rate. Neuroreport 7:879–883

    CAS  PubMed  Google Scholar 

  • Schneider C, Devanne H, Lavoie BA, Capaday C (2002) Neural mechanisms involved in the functional linking of motor points. Exp Brain Res 146:86–94

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Kelso JAS (1990) Intentional switching between patterns of bimanual coordination is dependent on the intrinsic dynamics of the patterns. J Mot Behav 22:98–124

    Google Scholar 

  • Schröger E, Widmann A (1998) Speeded responses to audiovisual signal changes result from bimodal integration. Psychophysiology 35:755–759

    CAS  PubMed  Google Scholar 

  • Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V (2000) Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res 133:303–311

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Johnston J, Chiang H, Ray W (2002a) Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 113:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Johnston J, Chiang H, Ray W (2002b) The role of sub-maximal force production in the enslaving phenomenon. Brain Res 954:212–219

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Johnston J, Chiang H, Ray W (2002c) Motor-related cortical potentials accompanying enslaving effect in single versus combination of fingers force production tasks. Clin Neurophysiol 113:1444–1453

    Article  CAS  PubMed  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  CAS  PubMed  Google Scholar 

  • Stein MA, Meredith WS (1993) The merging of the senses. MIT Press, Cambridge, MA

  • Sternad D (2001) Kurt Wachholder: Pioneering electrophysiological investigations on voluntary movements. In: Latash ML, Zatsiorsky VM (eds) Classics in movement science. Human Kinetics, Urbana Champaign, pp 375–408

  • Teskey GG, Monfils M-H, Vandenberg PM, Kleim JA (2002) Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb Cortex 12:98–105

    Article  PubMed  Google Scholar 

  • Todd JW (1912) Reaction to multiple stimuli. Arch Psychol 25:1–65

    Google Scholar 

  • Turken AU, Swick D (1999) Response selection in the human anterior cingulate cortex. Nat Neurosci 2:920–924

    CAS  PubMed  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, DeLong MR Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80:2162–2176

    CAS  PubMed  Google Scholar 

  • Vallbo ÅB Wessberg J (1993) Organization of motor output in slow finger movements in man. J Physiol (Lond) 469:673–691

    Google Scholar 

  • van Veen V, Cohen JD, Botvinick MM, Stenger VA Carter CS (2001) Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 14:1302–1308

    Article  PubMed  Google Scholar 

  • Wachholder K, Altenberger H (1926) Beiträge zur Physiologie der willkürlichen Bewegung. IX. Mitteilung. Fortlaufende Hin- und Herbewegungen. Pflugers Arch 214:625–641

    Google Scholar 

  • Wallenstein GV, Kelso JAS, Bressler SL (1995) Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 84:626–634

    Article  Google Scholar 

  • Williamson JW, McColl R, Mathews D (2003) Evidence for central command activation of the human insular cortex during exercise. J Appl Physiol 94:1726–1734

    CAS  PubMed  Google Scholar 

  • Winterer G, Adams CM, Jones DW, Knutson B (2002) Volition to action—an event related fMRI study. Neuroimage 17:851–858

    Article  Google Scholar 

  • Yue GH, Liu JZ, Siemionow V et al. (2000) Brain activation during human finger extension and flexion movements. Brain Res 856:291–300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stephan Swinnen for stimulating discussion and insightful commentary, and to two anonymous reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Carson.

Additional information

This work was supported by the Australian Research Council, the National Health and Medical Research Council of Australia, and by a Visiting Fellowship (F/01/082) awarded to the first author by the Katholieke Universiteit Leuven. The second author is supported by Senior Scientist and MERIT awards from NIMH

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carson, R.G., Kelso, J.A.S. Governing coordination: behavioural principles and neural correlates. Exp Brain Res 154, 267–274 (2004). https://doi.org/10.1007/s00221-003-1726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1726-8

Keywords

Navigation