Skip to main content

Advertisement

Log in

Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Delayed cell death following ischemic brain injury has been linked to alterations in gene expression. In this study we have evaluated the upregulation of several genes associated with delayed cell death (c-fos, bax, and bcl-2) during the initial 24 h of transient middle cerebral artery occlusion (MCAo) in the rat and the effects of postinjury treatment with the NR2B subunit specific NMDA receptor antagonist CGX-1007 (Conantokin-G, Con-G). C-fos mRNA levels peaked at 1 h postinjury in both cortical and subcortical ischemic brain regions (30-fold increase), remained elevated at 4 h and returned to within normal, preinjury levels 24 h postinjury. The increase in mRNA levels correlated to increased protein expression in the entire ipsilateral hemisphere at 1 h. Regions of necrosis at 4 h were void of C-Fos immunoreactivity with continued upregulation in surrounding regions. At 24 h, loss of C-Fos staining was observed in the injured hemisphere except for sustained increases along the border of the infarct and in the cingulate cortex of vehicle treated rats. CGX-1007 treatment reduced c-fos expression throughout the infarct region by up to 50%. No significant differences were measured in either bcl-2 or bax mRNA expression between treatment groups. However, at 24 h postinjury CGX-1007 treatment was associated with an increase in Bcl-2 immunoreactivity that correlated to a reduction in DNA fragmentation. In conclusion, CGX-1007 effectively attenuated gene expression associated with delayed cell death as related to a neuroprotective relief of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–D.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Akins P, Liu P, Hsu C (1996) Immediate early gene expression in response to cerebral ischemia. Friend or foe? Stroke 27:1682–1687

    Google Scholar 

  • Bading H (1999) Nuclear calcium-activated gene expression: possible roles in neuronal plasticity and epileptogenesis. Epilepsy Res 36:225–231

    Article  CAS  PubMed  Google Scholar 

  • Berti R, Williams A, Moffett J, Hale S, Velarde L, Elliott P, Yao C, Dave J, Tortella F (2002) Real time PCR mRNA analysis of the inflammatory cascade associated with ischemia reperfusion brain injury. J Cereb Blood Flow Metab 22:1068–1079

    PubMed  Google Scholar 

  • Bredesen D (2000) Apoptosis: overview and signal transduction pathways. J Neurotrauma 17:801–810

    CAS  PubMed  Google Scholar 

  • Britton P, Lu X, Laskosky M, Tortella F (1997) Dextromethorphan protects against cerebral injury following transient, but not permanent, focal ischemia in rats. Life Sci 60:1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C, Graham S, Chen J (2001) Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21:321–333

    PubMed  Google Scholar 

  • Chen Z, Blandl T, Prorok M, Warder S, Li L, Zhu Y, Pedersen L, Ni F, Castellino F (1998) Conformational changes in conantokin-G induced upon binding of calcium and magnesium as revealed by NMR structural analysis. J Biol Chem 273:16248–16258

    Article  CAS  PubMed  Google Scholar 

  • Cheung N, Pascoe C, Giardina S, John C, Beart P (1998) Micromolar l-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurones. Neuropharmacology 37:1419–1429

    Article  CAS  PubMed  Google Scholar 

  • Collaco-Moraes Y, Aspey B, de BJ, Harrison M (1994) Focal ischemia causes an extensive induction of immediate early genes that are sensitive to MK-801. Stroke 25:1855–1860; discussion 1861

    CAS  PubMed  Google Scholar 

  • Dave J, Tortella F (1994) Regional changes in c-fos mRNA in rat brain after i.v. or i.c.v. NMDA injections. Neuroreport 5:1645–1648

    CAS  PubMed  Google Scholar 

  • Dave J, Bauman R, Long J (1997) Hypoxia potentiates traumatic brain injury-induced expression of c-fos in rats. Neuroreport 8:395–398

    CAS  PubMed  Google Scholar 

  • Donevan S, McCabe R (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-d-aspartate receptors. Mol Pharmacol 58:614–623

    CAS  PubMed  Google Scholar 

  • Dragunow M, Preston K (1995) The role of inducible transcription factors in apoptotic nerve cell death. Brain Res Brain Res Rev 21:1–28

    Article  CAS  PubMed  Google Scholar 

  • Gillardon F, Lenz C, Waschke K, Krajewski S, Reed J, Zimmermann M, Kuschinsky W (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol Brain Res 40:254–260

    CAS  PubMed  Google Scholar 

  • Graham S, Chen J, Clark R (2000) Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 17:831–841

    CAS  PubMed  Google Scholar 

  • Hartings JA, Williams AJ, Tortella FC (2003) Occurrence of non-convulsive seizures, periodic lateralized epileptiform discharges, and rhythmic delta activity in rat focal ischemia. Exp Neurol 179:139–149

    Google Scholar 

  • Iwata A, Masago A, Yamada K (1997) Expression of basic fibroblast growth factor mRNA after transient focal ischemia: comparison with expression of c-fos, c-jun, and hsp 70 mRNA. J Neurotrauma 14:201–210

    CAS  PubMed  Google Scholar 

  • Kiessling M, Gass P (1994) Stimulus-transcription coupling in focal cerebral ischemia. Brain Pathol 4:77–83

    CAS  PubMed  Google Scholar 

  • Kinoshita Y, Ueyama T, Senba E, Terada T, Nakai K, Itakura T (2001) Expression of c-fos, heat shock protein 70, neurotrophins, and cyclooxygenase-2 mRNA in response to focal cerebral ischemia/reperfusion in rats and their modification by magnesium sulfate. J Neurotrauma 18:435–445

    CAS  PubMed  Google Scholar 

  • Kinouchi H, Sharp F, Chan P, Koistinaho J, Sagar S, Yoshimoto T (1994a) Induction of c-fos, junB, c-jun, and hsp70 mRNA in cortex, thalamus, basal ganglia, and hippocampus following middle cerebral artery occlusion. J Cereb Blood Flow Metab 14:808–817

    CAS  PubMed  Google Scholar 

  • Kinouchi H, Sharp F, Chan P, Mikawa S, Kamii H, Arai S, Yoshimoto T (1994b) MK-801 inhibits the induction of immediate early genes in cerebral cortex, thalamus, and hippocampus, but not in substantia nigra following middle cerebral artery occlusion. Neurosci Lett 179:111–114

    CAS  PubMed  Google Scholar 

  • Klein R, Castellino F (1999) Inhibition of MK801 binding in adult rat brain sections by conantokin-G and conantokin-T. Neurosci Lett 273:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Alvarez-Gonzalez R (2000) Expression of c-jun and c-fos in apoptotic cells after DNA damage. Cancer Invest 18:715–721

    CAS  PubMed  Google Scholar 

  • Liu D, Lu C, Wan R, Auyeung W, Mattson M (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 22:431–443

    CAS  PubMed  Google Scholar 

  • Lu J, Moochhala S, Kaur C, Ling E (2000) Changes in apoptosis-related protein (p53, Bax, Bcl-2 and Fos) expression with DNA fragmentation in the central nervous system in rats after closed head injury. Neurosci Lett 290:89–92

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Tortella F, Ved H, Garcia G, Dave J (1997) Neuroprotective role of c-fos antisense oligonucleotide: in vitro and in vivo studies. Neuroreport 8:2925–2929

    CAS  PubMed  Google Scholar 

  • Menniti F, Pagnozzi M, Butler P, Chenard B, Jaw-Tsai S, Frost WW (2000) CP-101,606, an NR2B subunit selective NMDA receptor antagonist, inhibits NMDA and injury induced c-fos expression and cortical spreading depression in rodents. Neuropharmacology 39:1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Linnoila M (1991) Regional induction of c-fos mRNA by NMDA: a quantitative in-situ hybridization study. Neuroreport 2:251–254

    CAS  PubMed  Google Scholar 

  • Nicotera P, Lipton S (1999) Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 19:583–591

    CAS  PubMed  Google Scholar 

  • Phillips J, Williams A, Adams J, Elliott P, Tortella F (2000) Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31:1686–1693

    PubMed  Google Scholar 

  • Prakasa BP, Yoshida Y, Su M, Segura M, Kawamura S, Yasui N (2000) Immunohistochemical expression of Bcl-2, Bax and cytochrome c following focal cerebral ischemia and effect of hypothermia in rat. Neurosci Lett 291:196–200

    Article  PubMed  Google Scholar 

  • Preston G, Lyon T, Yin Y, Lang J, Solomon G, Annab L, Srinivasan D, Alcorta D, Barrett J (1996) Induction of apoptosis by c-Fos protein. Mol Cell Biol 16:211–218

    CAS  PubMed  Google Scholar 

  • Prorok M, Castellino F (1998) Thermodynamics of binding of calcium, magnesium, and zinc to the N-methyl-d-aspartate receptor ion channel peptidic inhibitors, conantokin-G and conantokin-T. J Biol Chem 273:19573–19578

    Article  CAS  PubMed  Google Scholar 

  • Rigby A, Baleja J, Furie B, Furie B (1997) Three-dimensional structure of a gamma-carboxyglutamic acid-containing conotoxin, conantokin G, from the marine snail Conus geographus: the metal-free conformer. Biochemistry 36:6906–6914

    Article  CAS  PubMed  Google Scholar 

  • Smeyne R, Vendrell M, Hayward M, Baker S, Miao G, Schilling K, Robertson L, Curran T, Morgan J (1993) Continuous c-fos expression precedes programmed cell death in vivo. Nature 363:166–169

    CAS  PubMed  Google Scholar 

  • Tong L, Toliver-Kinsky T, Taglialatela G, Werrbach-Perez K, Wood T, Perez-Polo J (1998) Signal transduction in neuronal death. J Neurochem 71:447–459

    CAS  PubMed  Google Scholar 

  • Tortella F, Rose J, Robles L, Moreton J, Hughes J, Hunter J (1997) EEG spectral analysis of the neuroprotective kappa opioids enadoline and PD117302. J Pharmacol Exp Ther 282:286–293

    CAS  PubMed  Google Scholar 

  • Uemura Y, Kowall N, Moskowitz M (1991) Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex. Brain Res 552:99–105

    Article  CAS  PubMed  Google Scholar 

  • Wahl F, Obrenovitch T, Hardy A, Plotkine M, Boulu R, Symon L (1994) Extracellular glutamate during focal cerebral ischaemia in rats: time course and calcium dependency. J Neurochem 63:1003–1011

    CAS  PubMed  Google Scholar 

  • Welsh F, Moyer D, Harris V (1992) Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain. J Cereb Blood Flow Metab 12:204–212

    CAS  PubMed  Google Scholar 

  • Williams A, Dave J, Phillips J, Lin Y, McCabe R, Tortella F (2000) Neuroprotective efficacy and therapeutic window of the high-affinity N-methyl-d-aspartate antagonist conantokin-G: in vitro (primary cerebellar neurons) and in vivo (rat model of transient focal brain ischemia) studies. J Pharmacol Exp Ther 294:378–386

    CAS  PubMed  Google Scholar 

  • Williams A, Dave J, Lu M, Ling G, Tortella F (2002a) NR2B subunit selective NMDA antagonists are protective against staurosporine-induced apoptosis. Eur J Pharmacol 452:135–136

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Ling G, McCabe R, Tortella F (2002b) Intrathecal CGX-1007 is neuroprotective in a rat model of focal cerebral ischemia. Neuroreport 13:821–824

    CAS  PubMed  Google Scholar 

  • Yao C, Williams A, Cui P, Berti R, Hunter J, Tortella F, Dave J (2002) Differential pattern of expression of voltage-gated sodium channel genes following ischemic brain injury in rats. Neurotoxicity Res 4:67–75

    Article  CAS  Google Scholar 

  • Zhou L, Szendrei G, Fossom L, Maccecchini M, Skolnick P, Otvos L (1996) Synthetic analogues of conantokin-G: NMDA antagonists acting through a novel polyamine-coupled site. J Neurochem 66:620–628

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Luisa Velarde, Brad Cunningham, and James Hart for their technical help in this study. We would also like to thank LTC Duane Belote for his assistance in the immunohistochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Williams.

Additional information

Research was conducted in compliance with the Animal Welfare Act and other federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, NRC Publication, 1996 edition. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the US Army

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A.J., Ling, G., Berti, R. et al. Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Exp Brain Res 153, 16–26 (2003). https://doi.org/10.1007/s00221-003-1566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1566-6

Keywords

Navigation