Skip to main content
Log in

Asymptotic Stability and Classification of Multi-solitons for Klein–Gordon Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Focusing on multi-solitons for the Klein–Gordon equations, in the first part of this paper, we establish their conditional asymptotic stability. In the second part of this paper, we classify pure multi-solitons which are solutions converging to multi-solitons in the energy space as \(t\rightarrow \infty \). Using Strichartz estimates developed in our earlier work (Chen and Jendrej in Strichartz estimates for Klein–Gordon equations with moving potentials, 2022) and the modulation techniques, we show that if a solution stays close to the multi-soliton family, then it scatters to the multi-soliton family in the sense that the solution will converge in large time to a superposition of Lorentz-transformed solitons (with slightly modified velocities), and a radiation term which is in main order a free wave. Moreover, we construct a finite-codimension centre-stable manifold around the well-separated multi-soliton family. Finally, given different Lorentz parameters and arbitrary centers, we show that all the corresponding pure multi-solitons form a finite-dimension manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In particular, note that all pure multi-soliton solutions constructed in [18] meet this condition.. Moreover, Corollary 1.6 below will give a full characterization of the set of solutions satisfying this condition.

  2. Using more classical notations, \({\mathcal {D}}^{\frac{\nu }{2}}L_{x}^{2}\) is nothing but \(H^{-\nu /2}\).

References

  1. Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)

    MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg (2011). xvi+523 pp

  3. Beceanu, M.: A critical centre-stable manifold for Schrödinger’s equation in three dimensions. Commun. Pure Appl. Math. 65(4), 431–507 (2012)

    Article  Google Scholar 

  4. Beceanu, M., Chen, G.: Strichartz estimates for the Klein–Gordon equation in \(\mathbb{R}^{3+1}\). Pure Appl. Anal. (to appear) arXiv:2108.06390

  5. Bellazzini, J., Ghimenti, M., Le Coz, S.: Multi-solitary waves for the nonlinear Klein–Gordon equation. Commun. Partial Differ. Equ. 39(8), 1479–1522 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  Google Scholar 

  7. Buslaev, V., Perelman, G.: Scattering for the nonlinear Schrödinger equation: states that are close to a soliton. (Russian) Algebra i Analiz 4 (1992), no. 6, 63–102; translation in St. Petersburg Math. J. 4 (1993), no. 6, 1111–1142

  8. Buslaev, V., Perelman, G.: On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations, 75–98, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc., Providence, RI (1995)

  9. Chen, G.: Strichartz estimates for wave equations with charge transfer Hamiltonians, arXiv:1610.05226 (2016). Mem. Amer. Math. Soc. 273 (2021), no. 1339, v + 84 pp

  10. Chen, G.: Wave equations with moving potentials. Commun. Math. Phys. 375(2), 1503–1560 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, G.: Multisolitons for the defocusing energy critical wave equation with potentials. Commun. Math. Phys. 364(1), 45–82 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chen, G., Jendrej, J.: Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein–Gordon equations. Trans. Am. Math. Soc. 372(10), 7461–7496 (2019)

    Article  MathSciNet  Google Scholar 

  13. Chen, G., Jendrej, J.: Strichartz estimates for Klein–Gordon equations with moving potentials. arXiv:2210.03462 (2022)

  14. Chen, G., Jendrej, J.: Kink networks for scalar fields in dimension 1+1. Nonlinear Anal. 215, Paper No. 112643 (2022)

    Article  MathSciNet  Google Scholar 

  15. Combet, V.: Multi-soliton solutions for the supercritical gKdV equations. Commun. Partial Differ. Equ. 36(3), 380–419 (2011)

    Article  MathSciNet  Google Scholar 

  16. Costin, O., Huang, M., Schlag, W.: On the spectral properties of \(L_{\pm }\) in three dimensions. Nonlinearity 25(1), 125–164 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. Côte, R., Martel, Y.: Multi-travelling waves for the nonlinear Klein–Gordon equation. Trans. Am. Math. Soc. 370(10), 7461–7487 (2018)

    Article  MathSciNet  Google Scholar 

  18. Côte, R., Muñoz, C.: Multi-solitons for nonlinear Klein–Gordon equations. Forum Math. Sigma 2, Paper No. e15 (2014)

    Article  MathSciNet  Google Scholar 

  19. Côte, R., Friederich, X.: On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations. Commun. Partial Differ. Equ. 46(12), 2325–2385 (2021)

    Article  Google Scholar 

  20. Cuccagna, S.: Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 54(9), 1110–1145 (2001)

    Article  Google Scholar 

  21. D’Ancona, P., Fanelli, L.: Strichartz and smoothing estimates of dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33(4–6), 1082–1112 (2008)

    Article  MathSciNet  Google Scholar 

  22. Demanet, L., Schlag, W.: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation. Nonlinearity 19(4), 829–852 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Friederich , X.: On existence and uniqueness of asymptotic N-soliton-like solutions of the nonlinear Klein–Gordon equation. preprint (2021). arXiv:2106.01106

  24. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Anal. PDE 4(3), 405–460 (2011)

    Article  MathSciNet  Google Scholar 

  25. Le Coz, S., Li, D., Tsai, T.-P.: Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations. Proc. R. Soc. Edinb. Sect. A 145(6), 1251–1282 (2015)

    Article  Google Scholar 

  26. Krieger, J., Schlag, W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)

    Article  MathSciNet  Google Scholar 

  27. Krieger, J., Schlag, W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19(4), 815–920 (2006)

    Article  Google Scholar 

  28. Martel, Y.: Asymptotic N-solito-like solutions of the subcritical and critical generalized Korteweg–de Vries equations. Am. J. Math. 127(5), 1103–1140 (2005)

    Article  Google Scholar 

  29. Martel, Y., Merle, F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18(1), 55–80 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Martel, Y., Merle, F., Tsai, T.-P.: Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for subcritical gKdV equations. Commun. Math. Phys. 231(2), 347–373 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. Marzuola, J., Simpson, G.: Spectral analysis for matrix Hamiltonian operators. Nonlinearity 24(2), 389–429 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Nakanishi, K., Schlag, W.: Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption. Arch. Ration. Mech. Anal. 203(3), 809–851 (2012)

    Article  MathSciNet  Google Scholar 

  33. Nakanishi, K., Schlag, W.: Invariant manifolds and dispersive Hamiltonian evolution equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, (2011). vi+253 pp. ISBN: 978-3-03719-095-1

  34. Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. Partial Differ. Equ. 44(1–2), 1–45 (2012)

    Article  MathSciNet  Google Scholar 

  35. Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250(5), 2299–2333 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  36. Pego, R., Weinstein, M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164(2), 305–349 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  37. Perelman, G.: Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations. Commun. Partial Differ. Equ. 29(7–8), 1051–1095 (2004)

    Article  Google Scholar 

  38. Rodnianski, I., Schlag, W., Soffer, A.: Dispersive analysis of charge transfer models. Commun. Pure Appl. Math. 58(2), 149–216 (2005)

    Article  MathSciNet  Google Scholar 

  39. Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS. preprint (2003), arXiv preprint arXiv:math/0309114

  40. Schlag, W.: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. (2) 169(1), 139–227 (2009)

    Article  MathSciNet  Google Scholar 

  41. Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering for nonintegrable equations. Commun. Math. Phys. 133(1), 119–146 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  42. Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data. J. Differ. Equ. 98(2), 376–390 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  43. Tao, T.: Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, (2006). xvi+373 pp

  44. Tao, T.: Why are solitons stable? Bull. Am. Math. Soc. (N.S.) 46(1), 1–33 (2009)

    Article  MathSciNet  Google Scholar 

  45. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  Google Scholar 

  46. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Marius Beceanu and Chongchun Zeng for enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Chen.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Jendrej, J. Asymptotic Stability and Classification of Multi-solitons for Klein–Gordon Equations. Commun. Math. Phys. 405, 7 (2024). https://doi.org/10.1007/s00220-023-04904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-023-04904-5

Navigation