Skip to main content
Log in

Entropy Decay for Davies Semigroups of a One Dimensional Quantum Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a finite-range, translation-invariant commuting system Hamiltonian on a spin chain, we show that the Davies semigroup describing the reduced dynamics resulting from the joint Hamiltonian evolution of a spin chain weakly coupled to a large heat bath thermalizes rapidly at any temperature. More precisely, we prove that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain. Our theorem extends a seminal result of Holley and Stroock (Commun Math Phys 123(1):85–93, 1989) to the quantum setting as well as provides an exponential improvement over the non-closure of the gap proved by Brandao and Kastoryano (Commun Math Phys 344(3):915–957, 2016). This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems. Our proof relies upon a recently derived strong decay of correlations for Gibbs states of one dimensional, translation-invariant local Hamiltonians, and tools from the theory of operator spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that in this setting, the module Choi operator is not far from the standard Choi matrix \(\mathcal {C}_\Psi =\sum _{i,j}\mathinner {|{i}\rangle }\mathinner {\langle {j}|}\otimes \Psi (\mathinner {|{i}\rangle }\mathinner {\langle {j}|})\). Indeed, \(\chi _\Psi =1\otimes (\sigma ^{-\frac{1}{2}} \otimes 1)\mathcal {C}_\Psi (\sigma ^{-\frac{1}{2}} \otimes 1)\). In particular, the positivity of \(\chi _\Psi \) and \(\mathcal {C}_\Psi \) are equivalent.

References

  1. Aharonov, D., Arad, I., Landau, Z., Vazirani U.: The detectability lemma and quantum gap amplification. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 417–426 (2009)

  2. Alicki, R., Fannes, M., Horodecki, M.: On thermalization in Kitaev’s 2D model. J. Phys. A: Math. Theor. 42(6), 065303 (2009)

    MathSciNet  ADS  Google Scholar 

  3. Alicki, R., Horodecki, M., Horodecki, P., Horodecki, R.: On thermal stability of topological qubit in Kitaev’s 4D model. Open Syst. Inf. Dyn. 17(01), 1–20 (2010)

    MathSciNet  Google Scholar 

  4. Ames, W.F., Pachpatte, B.: Inequalities for Differential and Integral Equations, vol. 197. Elsevier, Amsterdam (1997)

    Google Scholar 

  5. Anshu, A., Arad, I., Vidick, T.: Simple proof of the detectability lemma and spectral gap amplification. Phys. Rev. B 93(20), 205142 (2016)

    ADS  Google Scholar 

  6. Araki, H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14(2), 120–157 (1969)

    MathSciNet  ADS  Google Scholar 

  7. Baillet, M., Denizeau, Y., Havet, J.-F.: Indice d’une espérance conditionnelle. Compos. Math. 66(2), 199–236 (1988)

    Google Scholar 

  8. Bardet, I.: Estimating the decoherence time using non-commutative functional inequalities. arXiv:1710.01039 (2017)

  9. Bardet, I., Capel, Á., Gao, L., Lucia, A., Pérez-García, D., Rouzé, C.: Rapid thermalization of spin chain commuting Hamiltonians. In preparation (2021)

  10. Bardet, I., Capel, Á., Lucia, A., Pérez-Garcia, D., Rouzé, C.: On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems. J. Math. Phys. 62(6), 061901 (2021)

    MathSciNet  ADS  Google Scholar 

  11. Bardet, I., Capel, Á., Rouzé, C.: Approximate tensorization of the relative entropy for noncommuting conditional expectations. Ann. Henri Poincaré 23, 101–140 (2022)

    MathSciNet  ADS  Google Scholar 

  12. Bardet, I., Rouzé, C.: Hypercontractivity and logarithmic Sobolev inequality for non-primitive quantum Markov semigroups and estimation of decoherence rates. arXiv:1803.05379 (2018)

  13. Beigi, S., Datta, N., Rouzé, C.: Quantum reverse hypercontractivity: its tensorization and application to strong converses. Commun. Math. Phys. 376(2), 753–794 (2018)

    MathSciNet  ADS  Google Scholar 

  14. Bergh, J., Löfström, J.: Interpolation Spaces: an Introduction, vol. 223. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  15. Bhatia, R.: Matrix Analysis, vol. 169. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  16. Bluhm, A., Capel, Á., Pérez-Hernández, A.: Exponential decay of mutual information for Gibbs states of local Hamiltonians. Quantum (to appear) (2022)

  17. Brandao, F.G.S.L., Kastoryano, M.J.: Finite correlation length implies efficient preparation of quantum thermal states Commun. Math. Phys. 365, 1–16 (2019). https://doi.org/10.1007/s00220-018-3150-8

    Article  MathSciNet  ADS  Google Scholar 

  18. Brannan, M., Gao, L., Junge, M.: Complete logarithmic Sobolev inequality via Ricci curvature bounded below II. J. Topol. Anal. 1–54 (2021)

  19. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    CAS  PubMed  ADS  Google Scholar 

  20. Capel, Á.: Quantum Logarithmic Sobolev Inequalities for Quantum Many-Body Systems: An approach via Quasi-Factorization of the Relative Entropy. Ph.D. Thesis at Universidad Autónoma de Madrid (2019)

  21. Capel, Á., Lucia, A., Pérez-Garcia, D.: Superadditivity of quantum relative entropy for general states. IEEE Trans. Inf. Theory 64(7), 4758–4765 (2017)

    MathSciNet  Google Scholar 

  22. Capel, Á., Lucia, A., Pérez-Garcia, D.: Quantum conditional relative entropy and quasi-factorization of the relative entropy. J. Phys. A: Math. Theor. 51(48), 484001 (2018)

    MathSciNet  Google Scholar 

  23. Capel, Á., Rouzé, C., Stilck França, D.: The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions. arXiv:2009.11817 (2020)

  24. Carbone, R., Martinelli, A.: Logarithmic Sobolev inequalities in non-commutative algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18(02), 1550011 (2015)

    MathSciNet  ADS  Google Scholar 

  25. Cesi, F.: Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields. Probab. Theory Relat. Fields 120(4), 569–584 (2001)

    MathSciNet  Google Scholar 

  26. Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011)

    ADS  Google Scholar 

  27. Coser, A., Pérez-García, D.: Classification of phases for mixed states via fast dissipative evolution. Quantum 3, 174 (2019)

    Google Scholar 

  28. Cubitt, T.S., Lucia, A., Michalakis, S., Pérez-García, D.: Stability of local quantum dissipative systems. Commun. Math. Phys. 337(3), 1275–1315 (2015)

    MathSciNet  ADS  Google Scholar 

  29. Dai-Pra, P., Paganoni, A.M., Posta, G.: Entropy inequalities for unbounded spin systems. Ann. Probab. 30(4), 1959–1976 (2002)

    MathSciNet  Google Scholar 

  30. Datta, N.: Min-and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    MathSciNet  Google Scholar 

  31. Davies, E.: Quantum Theory of Open Systems. Academic Press, London (1976)

    Google Scholar 

  32. Davies, E.: Generators of dynamical semigroups. J. Funct. Anal. 34(3), 421–432 (1979)

    MathSciNet  Google Scholar 

  33. Davies, E.B.: One-parameter semigroups (Academic Press, London, 1980), viii 230 pp. Proc. Edinb. Math. Soc. 26(1), 115–116 (1983)

    Google Scholar 

  34. De Palma, G., Rouzé, C.: Quantum concentration inequalities. arXiv:2106.15819 (2021)

  35. Effros, E., Ruan, Z.: Operator Spaces. In: London Mathematical Society Monographs. Clarendon Press (2000)

  36. Frigerio, A., Verri, M.: Long-time asymptotic properties of dynamical semigroups on W\(^*\)-algebras. Math. Z. 180(3), 275–286 (1982)

    MathSciNet  Google Scholar 

  37. Gao, L., Junge, M., LaRacuente, N.: Fisher information and logarithmic Sobolev inequality for matrix-valued functions. In: Annales Henri Poincaré vol. 21, pp. 3409–3478. Springer (2020)

  38. Gao, L., Junge, M., LaRacuente, N.: Relative entropy for von Neumann subalgebras. Int. J. Math. 31(06), 2050046 (2020)

    MathSciNet  Google Scholar 

  39. Gao, L., Junge, M., Li, H.: Geometric approach towards complete logarithmic Sobolev inequalities. arXiv:2102.04434 (2021)

  40. Gao, L., Rouzé, C.: Complete entropic inequalities for quantum Markov chains. Arch. Ration. Mech. Anal. 245(1), 183–238 (2022)

    MathSciNet  Google Scholar 

  41. Gu, J., Yin, Z., Zhang, H.: Interpolation of quasi noncommutative \( {L}_p \)-spaces. arXiv:1905.08491 (2019)

  42. Holley, R.A., Stroock, D.W.: Uniform and \(L_2\) convergence in one dimensional stochastic Ising models. Commun. Math. Phys. 123(1), 85–93 (1989)

    ADS  Google Scholar 

  43. Junge, M., Laracuente, N., Rouzé, C.: Stability of logarithmic Sobolev inequalities under a noncommutative change of measure. J. Stat. Phys. 190(2), 30 (2023)

    MathSciNet  ADS  Google Scholar 

  44. Junge, M., Parcet, J.: Mixed-Norm Inequalities and Operator Space \(L_p \) Embedding Theory. American Mathematical Society, Providence (2010)

  45. Kastoryano, M.J., Brandao, F.G.: Quantum Gibbs samplers: the commuting case. Commun. Math. Phys. 344(3), 915–957 (2016)

    MathSciNet  ADS  Google Scholar 

  46. Kastoryano, M.J., Temme, K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54(5), 052202 (2013)

    MathSciNet  ADS  Google Scholar 

  47. Kochanowski, J., Alhambra, A. M., Capel, A., Rouzé, C.: Spectral gap implies rapid mixing for commuting Hamiltonians. In preparation (2023)

  48. LaRacuente, N.: Quasi-factorization and multiplicative comparison of subalgebra-relative entropy. arXiv:1912.00983 (2019)

  49. Lucia, A., Pérez-García, D., Pérez-Hernández, A.: Thermalization in Kitaev’s quantum double models via Tensor Network techniques. arXiv:2107.01628 (2021)

  50. McGinley, M., Cooper, N.R.: Interacting symmetry-protected topological phases out of equilibrium. Phys. Rev. Res. 1(3), 033204 (2019)

    CAS  Google Scholar 

  51. McGinley, M., Cooper, N.R.: Fragility of time-reversal symmetry protected topological phases. Nat. Phys. 16(12), 1181–1183 (2020)

    CAS  Google Scholar 

  52. Müller-Hermes, A., França, D.S., Wolf, M.M.: Entropy production of doubly stochastic channels. J. Math. Phys. 57, 022203 (2016)

    MathSciNet  ADS  Google Scholar 

  53. Müller-Hermes, A., França, D.S., Wolf, M.M.: Relative entropy convergence for depolarizing channels. J. Math. Phys. 57, 022202 (2016)

    MathSciNet  ADS  Google Scholar 

  54. Nacu, Ş: Glauber dynamics on the cycle is monotone. Probab. Theory Relat. Fields 127(2), 177–185 (2003)

    MathSciNet  Google Scholar 

  55. Palma, G.D., Marvian, M., Trevisan, D., Lloyd, S.: The quantum Wasserstein distance of order 1. IEEE Trans. Inf. Theory 67, 6627–6643 (2021)

    MathSciNet  Google Scholar 

  56. Paschke, W.L.: Inner product modules over \({B}^*\)-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)

    MathSciNet  Google Scholar 

  57. Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. de l’École Norm. Supérieure Ser. 4 19(1), 57–106 (1986)

    MathSciNet  Google Scholar 

  58. Pisier, G.: Non-commutative vector valued \(L_p\)-spaces and completely \(p\)-summing maps. Société Mathématique de France (1998)

  59. Pisier, G.: Introduction to Operator Space Theory, vol. 294. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  60. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Google Scholar 

  61. Pérez-García, D., Pérez-Hernández, A.: Locality estimates for complex time evolution in 1D. Commun. Math. Phys. 399, 929–970 (2023)

    MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  62. Rouzé, C., Datta, N.: Concentration of quantum states from quantum functional and transportation cost inequalities. J. Math. Phys. 60(1), 012202 (2019)

    MathSciNet  ADS  Google Scholar 

  63. Rouzé, C., França, D. S.: Learning quantum many-body systems from a few copies. arXiv:2107.03333 (2021)

  64. Ruan, Z.-J.: Subspaces of \({C}^*\)-algebras. J. Funct. Anal. 76(1), 217–230 (1988)

    MathSciNet  Google Scholar 

  65. Son, W., Amico, L., Fazio, R., Hamma, A., Pascazio, S., Vedral, V.: Quantum phase transition between cluster and antiferromagnetic states. EPL (Europhys. Lett.) 95(5), 50001 (2011)

    ADS  Google Scholar 

  66. Spohn, H., Lebowitz, J.L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)

    CAS  Google Scholar 

  67. Zegarlinski, B.: Log-Sobolev inequalities for infinite one dimensional lattice systems. Commun. Math. Phys. 133(1), 147–162 (1990)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

IB is supported by French A.N.R. Grant: ANR-20-CE47-0014-01 “ESQuisses”. AC was partially supported by an MCQST Distinguished Postdoc and the Seed Funding Program of the MCQST (EXC-2111/Projekt-ID: 390814868). AL acknowledges support from the BBVA Fundation and from Grant RYC2019-026475-I funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 648913). AL and DPG acknowledge support from MMCIN/AEI/10.13039/501100011033 (Grants PID2020-113523GB-I00 and CEX2019-000904-S) and from Comunidad de Madrid (Grant QUITEMAD-CM, ref. P2018/TCS-4342). CR acknowledges financial support from a Junior Researcher START Fellowship from the MCQST, and AC and CR also acknowledge financial support by the DFG cluster of excellence 2111 (Munich Center for Quantum Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cambyse Rouzé.

Additional information

Communicated by E. Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 5.4

We now argue the other direction in Lemma 5.4. Namely,

$$\begin{aligned} \left\| x \right\| _{L_1^\infty (\mathcal {N}\subset \mathcal {M})}\ge \inf _{x=yz}\left\| yy^\dagger \right\| _{L_1^\infty (\mathcal {N}\subset \mathcal {M})}^{1/2}\left\| z^\dagger z \right\| _{L_1^\infty (\mathcal {N}\subset \mathcal {M})}^{1/2}. \end{aligned}$$
(106)

Let us denote

$$\begin{aligned} \left\| x \right\| _{h}:=\inf _{x=yz}\left\| yy^\dagger \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger z \right\| _{L_1^\infty }^{1/2} \end{aligned}$$

where the infimum takes over all factorization \(x=yz\). We first show \(\left\| \cdot \right\| _{h}\) is a norm. To verify the triangle inequality, it suffices to show that for any \(x_1=y_1z_1\), \(x_2=y_2z_2\), and \(\delta >0\), there exist \(y_0,z_0\) such that \(x_1+x_2=y_0z_0\) and

$$\begin{aligned} \left\| y_0y^\dagger _0 \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger _0z_0 \right\| _{L_1^\infty }^{1/2}\le \left\| y_1y_1^\dagger \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger _1z_1 \right\| _{L_1^\infty }^{1/2}+\left\| y_2y_2^\dagger \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger _2z_2 \right\| _{L_1^\infty }^{1/2}+\delta . \end{aligned}$$

By rescaling \(\mathcal {X}_1=t\mathcal {Y}_1\cdot t^{-1}z_1\), we can assume

$$\begin{aligned}&\left\| y_1 y_1^\dagger \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger _1z_1 \right\| _{L_1^\infty }^{1/2}+ \left\| y_2y_2^\dagger \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger _2z_2 \right\| _{L_1^\infty }^{1/2}\nonumber \\&\quad =\Big (\left\| y_1 y_1^\dagger \right\| _{L_1^\infty }+\left\| y_2y_2^\dagger \right\| _{L_1^\infty }\Big )^{1/2} \Big (\left\| z^\dagger _1z_1 \right\| _{L_1^\infty }+\left\| z^\dagger _2z_2 \right\| _{L_1^\infty }\Big )^{1/2} \end{aligned}$$
(107)

Take \(\delta >0\) and

$$\begin{aligned}&y=(y_1 y_1^\dagger +y_2y_2^\dagger +\delta \mathbbm {1})^{1/2}, z=(z_1^\dagger z_1+z_2^\dagger z_2+\delta \mathbbm {1})^{1/2},\\&x=y^{-1} (y_1z_1+y_2z_2)z^{-1}=y^{-1}(x_1+x_2)z^{-1}. \end{aligned}$$

We have \(\left\| \left[ \begin{array}{cc}y^{-1}y_1&{} y^{-1}y_2\\ 0&{}0 \end{array}\right] \right\| _{}\le 1\) and \(\left\| \left[ \begin{array}{cc}z_1z^{-1}&{} 0 \\ z_2z^{-1} &{} 0\end{array}\right] \right\| {}\le 1\). Thus

$$\begin{aligned} \left\| x \right\| =\left\| \left[ \begin{array}{cc}x&{}0\\ 0&{}0 \end{array}\right] \right\| {}\ \le \ \left\| \left[ \begin{array}{cc}y^{-1}y_1&{} y^{-1}y_2\\ 0&{}0 \end{array}\right] \right\| {}\left\| \left[ \begin{array}{cc}z_1z^{-1}&{} 0\\ z_2z^{-1}&{} 0 \end{array}\right] \right\| {}\ \le \ 1. \end{aligned}$$

Then we have \(x=x_1+x_2=yXz\) and

$$\begin{aligned}&\left\| yy^\dagger \right\| _{L_1^\infty }\left\| z^\dagger x^\dagger xz \right\| _{L_1^\infty }\\&\quad \le \left\| yy^\dagger \right\| _{L_1^\infty }\left\| z^\dagger z \right\| _{L_1^\infty }\\&\quad \le \left\| y_1 y_1^\dagger +y_2y_2^\dagger +\delta \right\| _{L_1^\infty }\left\| z_1^\dagger z_1+z_2^\dagger z_2+\delta \right\| _{L_1^\infty }\\&\quad \le \Big (\left\| y_1 y_1^\dagger \right\| _{L_1^\infty }+\left\| y_2y_2^\dagger \right\| _{L_1^\infty }+\delta \Big )\Big (\left\| z_1^\dagger z_1 \right\| _{L_1^\infty }+\left\| z_2^\dagger z_2 \right\| _{L_1^\infty }+\delta \Big )\ \end{aligned}$$

Since \(\delta >0\) is arbitrary, we have by (107)

$$\begin{aligned}&\left\| yy^\dagger \right\| _{L_1^\infty }^{1/2}\left\| z^\dagger x^\dagger x z \right\| _{L_1^\infty }^{1/2}\\&\quad \le \left\| y_1 y_1^\dagger \right\| _{L_1^\infty }^{1/2}\left\| y_2y_2^\dagger \right\| _{L_1^\infty }^{1/2}+\left\| z_1^\dagger z_1 \right\| _{L_1^\infty }^{1/2}\left\| z_2^\dagger z_2 \right\| _{L_1^\infty }^{1/2} \end{aligned}$$

This proves the triangular inequality and also

$$\begin{aligned} \left\| x \right\| _{h}=\inf _{x=\sum _{i}y_iz_i}\left\| \sum _{i}y_iy_i^\dagger \right\| _{L_1^\infty }^{1/2}\left\| \sum _{i}z^\dagger _iz_i \right\| _{L_1^\infty }^{1/2}, \end{aligned}$$

where the supremum is over all finite families \(\{y_i\}\) and \(\{z_i\}\) such that \(\sum _{i=1}^ky_iz_i=x\). We now use a standard Grothendieck–Pietsch factorization to show \(\left\| \cdot \right\| _{h}=\left\| \cdot \right\| _{L_1^\infty }\). Suppose \(\left\| x \right\| _{h}=1\). By Hahn–Banach Theorem, there exists a linear functional \(\phi :\mathcal {M}\rightarrow \mathbb {C}\) such that \(\phi (x)=\left\| x \right\| _{h}=1\) and for any finite families \(\{y_i\}\) and \(\{z_i\}\),

$$\begin{aligned} |\sum _{i=1}^k\phi (y_iz_i)|\le \sup _{ \left\| a \right\| _{L_\infty ^1}=1}\langle a,\sum _{i}y_iy_i^\dagger \rangle _{\sigma _{{\text {tr}}}}^{1/2}\sup _{\left\| b \right\| _{L_\infty ^1}=1}\langle b, \sum _{i}z_i^\dagger z_i\rangle _{\sigma _{{\text {tr}}}}^{1/2}. \end{aligned}$$

Here we use the duality \(L_1^\infty (\mathcal {N}\subset \mathcal {M})^*=L_\infty ^1(\mathcal {N}\subset \mathcal {M})\) and for positive \(Y\ge 0\),

$$\begin{aligned} \left\| Y \right\| _{L_1^\infty }=\sup _{\left\| a \right\| _{L_\infty ^1}=1}|\langle Y, a\rangle _{\sigma _{{\text {tr}}}}|=\sup _{a\ge 0, \left\| a \right\| _{L_\infty ^1}=1}\langle Y, a\rangle _{\sigma _{{\text {tr}}}}. \end{aligned}$$

By modifying the phase factor and by the arithmetic–geometric mean inequality, we have

$$\begin{aligned} \sup _{a\ge 0, \left\| a \right\| _{L_\infty ^1}=1}\langle a,\sum _{i}y_iy_i^\dagger \rangle _{\sigma _{{\text {tr}}}}+\sup _{b\ge 0, \left\| b \right\| _{L_\infty ^1}=1}\langle b, \sum _{i}z_i^\dagger z_i\rangle _{\sigma ,{{\text {tr}}}}-2\sum _{i=1}^k \text {Re }\phi (y_iz_i)\ge 0. \end{aligned}$$
(108)

Denote \(B_{+}\) as the positive unit ball of \(L_\infty ^1(\mathcal {N}\subset \mathcal {M})\) and \(C(B_{+}\times B_{+})\) as the real continuous function space. For each pair of finite families \(\textbf{y}=\{y_i\}\) and \(\textbf{z}=\{z_i\}\), we define the function

$$\begin{aligned} f_{\textbf{y}, \textbf{z}}:B_+\times B_+\rightarrow \mathbb {R}, f_{\textbf{y}, \textbf{z}}(a,b)=\langle a,\sum _{i}y_iy_i^\dagger \rangle _{\sigma _{{\text {tr}}}}+\langle b, \sum _{i}z_i^\dagger z_i\rangle _{\sigma ,{{\text {tr}}}}-\sum _{i=1}^k \text {Re} \phi (y_iz_i). \end{aligned}$$

We define the following cones in \(C(B_{+}\times B_{+})\)

$$\begin{aligned}&C=\{f_{\textbf{y}, \textbf{z}} \ | \ \{y_i\}, \{z_i\}\subset \mathcal {M}\}\\&C_-=\{f\in C(B_{+}\times B_{+},\mathbb {R}) \ | \sup f<0 \}. \end{aligned}$$

Note that both C and \(C_-\) are convex and \(C_-\) is furthermore open. Moreover, \(C\cap C_-=\emptyset \) because of (108). By Hahn–Banach separation theorem, there exists a linear functional \(\psi : C(B_{+}\times B_{+})\rightarrow \mathbb {R}\) such that

$$\begin{aligned} \psi (f_-) \le \lambda \le \psi (f_{\textbf{y}, \textbf{z}}) \end{aligned}$$

for any \(f_-\in C_-\) and \(f_{\textbf{y}, \textbf{z}}\in C\). Since \(C_-\) is a cone, \(\lambda \ge 0\) and hence \(\psi \) is a positive linear function. Up to normalization, there exists a probability measure \(\mu \) on \(B_+\times B_+\) such that \(\psi (f)=\int _{B_+\times B_+}f(a,b)\ d\mu (a,b)\). Take

$$\begin{aligned} a_0=\int _{B_+\times B_+} a\ d\mu (a,b),\ b_0=\int _{B_+\times B_+} b\ d\mu (a,b). \end{aligned}$$

By convexity of \(B_+\), we have \(a_0,b_0\in B_+\) and moreover for every \(y,z\in \mathcal {M}\),

$$\begin{aligned} \psi (f_{\{y\}, \{z\}})=&\int _{B_+\times B_+}f(a,b)d\mu (a,b)\\ =&\int _{B_+\times B_+}\langle a,yy^\dagger \rangle _{\sigma _{{\text {tr}}}}d\mu (a,b)+\int _{B_+\times B_+}\langle b z^\dagger z\rangle _{\sigma ,{{\text {tr}}}}d\mu (a,b)-2 \text {Re} \phi (yz)\\ =&\langle a_0,yy^\dagger \rangle _{\sigma _{{\text {tr}}}}+\langle b_0,z^\dagger z\rangle _{\sigma ,{{\text {tr}}}}- \text {Re} \phi (yz)\ge 0. \end{aligned}$$

Rescaling \(y_i\) and \(z_i\) again, we have

$$\begin{aligned} |\phi (yz)|\le {{\text {tr}}}(a_0\sigma _{{\text {tr}}}^{1/2}yy^\dagger \sigma _{{\text {tr}}}^{1/2})^{1/2} {{\text {tr}}}(b_0\sigma _{{\text {tr}}}^{1/2}z^\dagger z\sigma _{{\text {tr}}}^{1/2})^{1/2}=\left\| a_0^{1/2}\sigma _{{\text {tr}}}^{1/2}y \right\| _{2,{{\text {tr}}}}\left\| z\sigma _{{\text {tr}}}^{1/2}b_0^{1/2} \right\| _{2,{{\text {tr}}}}, \end{aligned}$$

where \(\Vert .\Vert _{2,{{\text {tr}}}}\) denotes the Hilbert Schmidt norm. One can further find invertible \(a_1,b_1\in (1+\epsilon )B_+\) such that

$$\begin{aligned} |\phi (yz)|\le \left\| a_1^{1/2}\sigma _{{\text {tr}}}^{1/2}y \right\| _{2,{{\text {tr}}}}\left\| z\sigma _{{\text {tr}}}^{1/2}b_1^{1/2} \right\| _{2,{{\text {tr}}}} \end{aligned}$$

Because of the invertibility of \(a_1,b_1\), there exists a contraction u such that

$$\begin{aligned} \phi (yz)={{\text {tr}}}( ua_1^{1/2}\sigma _{{\text {tr}}}^{1/2}yz\sigma _{{\text {tr}}}^{1/2}b_1^{1/2})=\langle a_1^{1/2}u^\dag b_1^{1/2}, yz \rangle _{\sigma _{{\text {tr}}}} \end{aligned}$$

Note that by Hölder inequality,

$$\begin{aligned} \left\| a_1^{1/2}u^\dag b_1^{1/2} \right\| _{L_\infty ^1}=&\sup _{\left\| X \right\| _{2}=\left\| Y \right\| _{2}=1}\left\| Xa_1^{1/2}u^\dag b_1^{1/2}Y \right\| _{1}\\ =&\sup _{X,Y}\left\| \sigma _{{\text {tr}}}^{1/2}Xa_1^{1/2} \right\| _{2,{{\text {tr}}}} \left\| u^\dag b_1^{1/2}Y \sigma _{{\text {tr}}}^{1/2} \right\| _{2,{{\text {tr}}}}\\ =&\sup _{X,Y}{{\text {tr}}}(\sigma _{{\text {tr}}}Xa_1X^\dag )^{1/2} {{\text {tr}}}(Y^\dag b_1^{1/2}uu^\dag b_1^{1/2}Y\sigma _{{\text {tr}}})\\ \le&\sup _{X,Y}\left\| Xa_1X^\dag \right\| _{1}^{1/2} \left\| Y^\dag b_1 Y \right\| _{1}^{1/2}\le \left\| a_1 \right\| _{L_\infty ^1}^{1/2}\left\| b_1 \right\| _{L_\infty ^1}^{1/2}=1+\epsilon . \end{aligned}$$

Therefore, for any factorization \(x=yz\),

$$\begin{aligned} \left\| x \right\| _{h}=\phi (x)= \langle a_1^{1/2}u^\dag b_1^{1/2}, x \rangle _{\sigma _{{\text {tr}}}}\le \left\| a_1^{1/2}u^\dag b_1^{1/2} \right\| _{L_\infty ^1}\left\| x \right\| _{L_1^\infty }\le (1+\epsilon ) \left\| x \right\| _{L_1^\infty }. \end{aligned}$$

Since \(\epsilon \) is arbitrary, that concludes the proof.

Appendix B: Temperature Dependence of the Mixing Condition

Here we discuss the dependence of \(\mathcal {K}_\beta \) from Eq. (42), and thus that of \(\mathcal {C}_\beta \) from Lemma 3.3 on the inverse temperature \(\beta \). This can be studied by carefully reviewing the estimates presented in [16], jointly with the fact that we are focusing on commuting Hamiltonians. A complete proof of the exponential dependence of \(\mathcal {C}_\beta \) with \(\beta \) can be found in [47], but we include here a short sketch of the proof for completeness.

We consider a local interaction on 1D, i.e., a family \(\Phi = (\Phi _{X})_{X \in \mathcal {P}_0(\mathbb {Z})}\), where \(\Phi _X \in \mathcal {B}(\mathcal {H}_X)\) and \(\Phi _X = \Phi _X^*\) for every \(X \in \mathcal {P}_0(\mathbb {Z})\). We further assume that this interaction is translation invariant, commuting, and define for every finite subset \(\Lambda \subset \subset \mathbb {Z}\) the corresponding Hamiltonian by

$$\begin{aligned} H_{\Lambda }:= \sum _{X \subset \Lambda }{\Phi _{X}}. \end{aligned}$$

Given two segments \(A,B \subset \Lambda \), we use the following notation for the expansional:

$$\begin{aligned} E_{A,B}(\beta ):=e^{-\beta H_{AB}}e^{\beta (H_{A}+H_B)}. \end{aligned}$$

With this notation at hand, and dropping \(\beta \) from the expressions below for better readability, we can derive the dependence of the mixing condition from Eq. (44) with \(\beta \), namely can show that given an interval \(\Lambda \subset \mathbb {Z}\) split as \(\Lambda =XYZ\), the following holds:

$$\begin{aligned} \left\| \sigma _{XZ}\sigma _X^{-1} \otimes \sigma _Z^{-1} - \mathbbm {1}_{XZ} \right\| \le \mathcal {O}(e^{\beta }). \end{aligned}$$
(109)

Indeed, by [16, Proof of Proposition 8.1], and denoting by \(\sigma ^\xi := e^{-H_\xi }/Z_\xi \) with \(Z_\xi :={{\text {tr}}}[e^{-H_\xi }]\) for any \(\xi \subset \Lambda \), we can write:

$$\begin{aligned}&\left\| \sigma _{XZ}\sigma _X^{-1} \otimes \sigma _Z^{-1} - \mathbbm {1}_{XZ} \right\| \\&\quad \le \left\| {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,YZ}^\dagger \big )^{-1} \right\| \left\| {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{XY,Z}^\dagger \big )^{-1} \right\| \\&\qquad \Bigg ( \left\| {{\text {tr}}}_{X}\big (\sigma ^{X} E_{X,Y}^\dagger E_{XY,Z}^\dagger \big ) \right\| \underbrace{\left| \lambda _{XYZ} - 1 \right| }_{\chi _1} \\&\qquad + \underbrace{\left\| {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,YZ}^\dagger \big ) {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{XY,Z}^\dagger \big ) - {{\text {tr}}}_{X}\big (\sigma ^{X} E_{X,Y}^\dagger E_{XY,Z}^\dagger \big ) \right\| }_{\chi _2} \Bigg ), \end{aligned}$$

where

$$\begin{aligned} \lambda _{XYZ}:= \frac{Z_{XYZ}Z_Y}{Z_{XY} Z_{YZ}}, \end{aligned}$$

and

$$\begin{aligned}{} & {} {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,YZ}^\dagger \big )^{-1} \nonumber \\{} & {} = {{\text {tr}}}_{YZ} \big ( e^{-H_{YZ}}e^{H_X+H_{YZ}} e^{-H_{XYZ}} \big )^{-1} Z_{YZ} =e^{-H_X} {{\text {tr}}}_{YZ} \big ( e^{-H_{XYZ}} \big )^{-1} Z_{YZ}, \end{aligned}$$

and analogously for the rest. Considering the explicit form of the expansionals, and taking into account that the Hamiltonian is commuting, it is easy to notice that

$$\begin{aligned} \left\| E_{A,B} (\beta ) \right\| \le K = \mathcal {O}(e^\beta ), \end{aligned}$$

for any \(A,B \subset \Lambda \), and the same K can be taken for \(E_{A,B}^\dagger \) and \(E_{A,B}^{-1}\). Moreover, following the steps of [16, Corollary 4.4] and adapting them for the commuting case, we notice that

$$\begin{aligned} \left\| {{\text {tr}}}_{BC}\big (\sigma ^{BC} E_{A,BC}^\dagger \big )^{-1} \right\| \le K, \end{aligned}$$

for \(\Lambda = ABC\), and all similar terms behave in an analogous way. Thus, we can upper bound the expression above as

$$\begin{aligned} \left\| \sigma _{XZ}\sigma _X^{-1} \otimes \sigma _Z^{-1} - \mathbbm {1}_{XZ} \right\| \le K^2 ( K \chi _1 + \chi _2 ). \end{aligned}$$

For \(\chi _1\), note that by [16, Step 2 of Proposition 8.1], denoting by \({\text {Tr}}_X\) the scalar trace in X (not to be confused with the operator trace denoting by \({\text {tr}}_X\) in X), we have

$$\begin{aligned} \left| \lambda _{XYZ} - 1 \right| \le K \left| {\text {Tr}}_{XY} \big (\sigma ^{XY} E_{X,Y}^{\dagger \ -1} \big ) - {\text {Tr}}_{XYZ} \big (\sigma ^{XYZ} E_{X,YZ}^{\dagger \ -1} \big ) \right| , \end{aligned}$$

and considering now a splitting of Y into \(Y_1 Y_2\) with \(Y_1:=\partial X\), as well as noticing \(E_{X,Y}=E_{X,YZ}=E_{X,Y_1}\) because of commutativity, we obtain:

$$\begin{aligned} \left| \lambda _{XYZ} - 1 \right|&\le K \left| {\text {Tr}}_{XY_1} \Big [ \Big ( {\text {tr}}_{Y_2}\big (\sigma ^{XY} \big ) - {\text {tr}}_{Y_2Z}\big (\sigma ^{XYZ} \big ) \Big ) E_{X,Y_1}^{\dagger \ -1} \Big ] \right| \\&\le K \left\| {\text {tr}}_{Y_2}\big (\sigma ^{XY} \big ) - {\text {tr}}_{Y_2Z}\big (\sigma ^{XYZ} \big ) \right\| \left\| E_{X,Y_1}^{\dagger \ -1} \right\| . \end{aligned}$$

The first norm in the right-hand side can be bounded by the so-called local indistinguishability [17], which is subsequently bounded by the covariance. Since 1D translation-invariant, local, (non-necessarily) commuting systems are known to satisfy exponential decay of correlations [6, 16, 61], \(\left\| {\text {tr}}_{Y_2}\big (\sigma ^{XY} \big ) - {\text {tr}}_{Y_2Z}\big (\sigma ^{XYZ} \big ) \right\| \) is known to decay exponentially fast with \(|Y_2|\), scaling at most exponentially with \(\beta \). Hence, \( \left| \lambda _{XYZ} - 1 \right| \le \mathcal {O}(e^\beta )\).

The bound for \(\chi _2\) follows similar ideas but is slightly more involved. For \(\Lambda =XYZ\), we split now Y into \(Y_1 Y_2 Y_3\) such that \(Y_1:= \partial X\) and \(Y_3:= \partial Z\). Then, we can write:

$$\begin{aligned}&\left\| {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,YZ}^\dagger \big ) {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{XY,Z}^\dagger \big ) - {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y}^\dagger E_{XY,Z}^\dagger \big ) \right\| \\&\quad \le \left\| {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y_1}^\dagger E_{Y_3,Z}^\dagger \big ) - {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) \right\| \\&\qquad + \left\| {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) - {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{Y_3,Z}^\dagger \big ) \right\| . \end{aligned}$$

The first term in the right-hand side above can be upper bounded following a similar trick as for \(\chi _1\). The idea is to split the trace in Y by tracing out first \(Y_1\) and \(Y_3\), and subsequently \(Y_2\). This allows us to decouple the difference inside the partial trace and estimate it after applying Hölder’s inequality by

$$\begin{aligned} \left\| \sigma _{Y_1 Y_3} - \sigma _{Y_1}\otimes \sigma _{Y_3} \right\| _1. \end{aligned}$$

This term is obtained as a supremum over the covariance, and thus it is also known to decay exponentially fast with \(|Y_2|\), scaling at most exponentially with \(\beta \). For the second term above, we notice that it can be split as

$$\begin{aligned}&\left\| {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) - {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{Y_3,Z}^\dagger \big ) \right\| \\&\quad \le \left\| {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) - {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) \right\| \\&\qquad + \left\| {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) - {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,Y_1}^\dagger \big ) {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{Y_3,Z}^\dagger \big ) \right\| \\&\quad \le K \left( \left\| {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{X,Y_1}^\dagger \big ) - {{\text {tr}}}_{YZ}\big (\sigma ^{YZ} E_{X,Y_1}^\dagger \big ) \right\| + \left\| {{\text {tr}}}_{Y}\big (\sigma ^{Y} E_{Y_3,Z}^\dagger \big ) - {{\text {tr}}}_{XY}\big (\sigma ^{XY} E_{Y_3,Z}^\dagger \big ) \right\| \right) , \end{aligned}$$

and these last two terms can be bounded again by local indistinguishability, yielding thus an scaling with \(\beta \) which is at most exponential.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardet, I., Capel, Á., Gao, L. et al. Entropy Decay for Davies Semigroups of a One Dimensional Quantum Lattice. Commun. Math. Phys. 405, 42 (2024). https://doi.org/10.1007/s00220-023-04869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-023-04869-5

Navigation