Skip to main content
Log in

Infinite-Dimensional Lie Bialgebras via Affinization of Novikov Bialgebras and Koszul Duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Balinsky and Novikov showed that the affinization of a Novikov algebra naturally defines a Lie algebra, a property that in fact characterizes the Novikov algebra. It is also an instance of the operadic Koszul duality. In this paper, we develop a bialgebra theory for the Novikov algebra, namely the Novikov bialgebra, which is characterized by the fact that its affinization (by a quadratic right Novikov algebra) gives an infinite-dimensional Lie bialgebra, suggesting another instance of Koszul duality for properads. A Novikov bialgebra is also characterized as a Manin triple of Novikov algebras. The notion of Novikov Yang–Baxter equation is introduced, whose skewsymmetric solutions can be used to produce Novikov bialgebras and hence Lie bialgebras. Moreover, these solutions also give rise to skewsymmetric solutions of the classical Yang–Baxter equation in the infinite-dimensional Lie algebras from the Novikov algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No new data were created or analyzed in this study.

Notes

  1. See §19 where he wrote “The moral is that Novikov algebras are not proper”.

References

  1. Abedin, R., Maximov, S., Stolin, A., Zelmanov, E.: Topological Lie bialgebra structures and their classification over \({\mathfrak{g}}[[x]]\). arXiv:2203.01105v3 (2022)

  2. Arbarello, E., De Concini, C., Kac, V., Procesi, C.: Moduli space of curves and representation theory. Commun. Math. Phys. 117, 1–36 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bai, C.: A unified algebraic approach to the classical Yang–Baxter equation. J. Phys. A Math. Theor. 40, 11073–11082 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bai, C.: Double constructions of Frobenius algebras, Connes cpcycles and their duality. J. Noncommun. Geom. 4, 475–530 (2010)

    Article  MATH  Google Scholar 

  5. Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, Manin products and Rota-Baxter operators. Int. Math. Res. Not., 485–524 (2013)

  6. Bai, C., Li, H., Pei, Y.: \(\phi _\epsilon \)-coordinated modules for vertex algebras. J. Algebra 246, 211–242 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bai, C., Liu, L., Ni, X.: Some results on \(L\)-dendriform algebras. J. Geom. Phys. 60, 940–950 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bai, C., Meng, D.: The classification of Novikov algebras in low dimensions. J. Phys. A Math. Gen. 34, 1581–1594 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bai, C., Meng, D.: Bilinear forms on Novikov algebras. Int. J. Theoret. Phys. 41, 495–502 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Balinsky, A., Novikov, S.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32, 228–231 (1985)

    MATH  Google Scholar 

  11. Beidar, K., Fong, Y., Stolin, A.: On Frobenius algebras and the quantum Yang–Baxter equation. Trans. Am. Math. Soc. 349, 3823–3836 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bourbaki, N.: Topological Vector Spaces, Chapter 1–5, Springer (2003)

  13. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Drinfeld, V.: Hamiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang–Baxter equations. Sov. Math. Dokl. 27, 68–71 (1983)

    Google Scholar 

  15. Drinfeld, V.: Quantum groups, Proceedings of the International Congress of Mathematicians (Berkeley 1986), 798–820. American Mathematical Society (1987)

  16. Dzhumadil’daev, A.: Codimension growth and non-Koszulity of Novikov operad. Commun. Algebra 39, 2943–2952 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gan, W.L.: Koszul duality for dioperads. Math. Res. Lett. 10, 109–124 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Gelfand, I., Dorfman, I.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13, 248–262 (1979)

    Article  Google Scholar 

  19. Gelfand, I., Dorfman, I.: Hamiltonian operators and infinite dimensional Lie algebras. Funct. Anal. Appl. 15, 173–187 (1981)

    Article  MathSciNet  Google Scholar 

  20. Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 6, 203–272 (1994)

    MATH  MathSciNet  Google Scholar 

  21. Guediri, M.: Novikov algebras carrying an invariant Lorentzian symmetric bilinear form. J. Geom. Phys. 82, 132–144 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Han, J., Li, J., Su, Y.: Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J. Math. Phys. 50, 083504 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Henkel, M.: Schrödinger invariance and strongly anisotropic critical systems. J. Stat. Phys. 75, 1023–1029 (1994)

    Article  ADS  MATH  Google Scholar 

  24. Hong, Y.: Extending structures and classifying complements for left-symmetric algebras. Results Math.74, Paper No. 32, 24pp (2019)

  25. Khoroshkin, S., Pop, I., Samsonon, M., Stolin, A., Tolstoy, V.: On some Lie bialgebra structures on polynomial algebras and their quantization. Commun. Math. Phys. 282, 625–662 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Krasnov, T., Zotov, A.: Trigonometric integrable tops from solutions of associative Yang–Baxter equation. Ann. H. Poincare 20, 2671–2697 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kupershmidt, B.: What a classical \(r\)-matrix really is. J. Nonlinear Math. Phys. 6, 448–488 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Kupershmidt, B.: Phase Spaces of Algebras, Mathematics Publications and Other Works (2010). http://trace.tennessee.edu/utk_mathpubs/2

  29. Lebzioui, H.: On pseudo-Euclidean Novikov algebras. J. Algebra 564, 300–316 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  30. Loday, J.-L.: Cup product for Leibniz cohomology and dual Leibniz algebras. Math. Scand. 77, 189–196 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Loday, J., Vallette, B.: Algebraic Operads, Grundlehern Der Mathematischen Wissenschaften 346, Springer (2012)

  32. Michaelis, W.: A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv. Math. 107, 365–392 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Montaner, F., Stolin, A., Zelmanov, E.: Classification of Lie bialgebras over current algebras. Sel. Math. 16, 935–962 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ng, S., Taft, E.: Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J. Pure Appl. Algebra 151, 67–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Osborn, J.M.: Modules for Novikov algebras. Contemp. Math. 184, 327–327 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pei, Y., Bai, C.: Novikov algebras and Schrödinger–Virasoro Lie algebras. J. Phys. A Math. Theor. 44, 045201, 18 pp (2011)

  37. Semonov-Tian-Shansky, M.: What is a classical \(r\)-matrix? Funct. Anal. Appl. 17, 259–272 (1983)

    Article  Google Scholar 

  38. Takeuchi, M.: Topological coalgebras. J. Algebra 97, 505–539 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  39. Vallette, B.: A Koszul duality for props. Trans. Am. Math. Soc. 359, 4865–4943 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu, X.: Quadratic conformal superalgebras. J. Algebra 231, 1–38 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zelmanov, E.: On a class of local translation invariant Lie algebras. Soviet Math. Dokl. 35, 216–218 (1987)

    Google Scholar 

  42. Zhu, F., Chen, Z.: Novikov algebras with associative bilinear forms. J. Phys. A Math. Theor. 40, 14243–14251 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC (12171129, 11871421, 11931009, 12271265, 12261131498), the Zhejiang Provincial Natural Science Foundation of China (LY20A010022) and the Scientific Research Foundation of Hangzhou Normal University (2019QDL012), the Fundamental Research Funds for the Central Universities and Nankai Zhide Foundation. We thank Jun Pei for helpful discussions. We give our appreciation to the referees for their suggestions that have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Bai, C. & Guo, L. Infinite-Dimensional Lie Bialgebras via Affinization of Novikov Bialgebras and Koszul Duality. Commun. Math. Phys. 401, 2011–2049 (2023). https://doi.org/10.1007/s00220-023-04684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04684-y

Navigation