Skip to main content
Log in

Metastability for the Dissipative Quasi-Geostrophic Equation and the Non-local Enhancement

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the linear metastability for the linearized 2D dissipative surface quasi-geostrophic equation with small viscosity \(\nu \) around the quasi-steady state \(\Theta _{\sin }=-e^{-\nu t}\sin y\). We proved the linear enhanced dissipation and obtained the dissipation rate. Moreover, the new non-local enhancement phenomenon was discovered and discussed. Precisely we showed that the non-local term \(\cos y\partial _x(-\Delta )^{-\frac{1}{2}}\theta \) re-enhances the enhanced diffusion effect by the shear-diffusion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albritton, D., Beekie, R., Novack, M.: Enhanced dissipation and hörmander’s hypoellipticity. J. Funct. Anal. 283, 109522 (2022)

    Article  MATH  Google Scholar 

  2. Beck, M., Wayne, C.E.: Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Rev. 53, 129–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 143, 905–927 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224, 1161–1204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Vicol, V., Wang, F.: The sobolev stability threshold for 2d shear flows near couette. J. Nonlinear Sci. 28, 2051–2075 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(2), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, D., Zhang, Z., Zhao, W.: Fujita-Kato theorem for the 3-D inhomogeneous Navier-Stokes equations. J. Differ. Equ. 261, 738–761 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, Q., Li, T., Wei, D., Zhang, Z.: Transition threshold for the 2-D Couette flow in a finite channel. Arch. Ration. Mech. Anal. 238, 125–183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.-M.: Quasi-stationary solutions of the surface quasi-geostrophic equation. (2021) arXiv preprint arXiv:2105.00737

  10. Constantin, P.: Energy spectrum of quasigeostrophic turbulence, Physical Review Letters, 89. (2002) https://doi.org/10.1103/PhysRevLett.89.184501. Copyright: Copyright 2017 Elsevier B.V., All rights reserved

  11. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the \(2\)-D quasigeostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coti Zelati, M.: Stable mixing estimates in the infinite Péclet number limit. J. Funct. Anal. 279, 108562, 25 (2020)

    MATH  Google Scholar 

  15. Coti Zelati, M., Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation timescales and mixing rates. Comm. Pure Appl. Math. 73, 1205–1244 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coti Zelati, M., Drivas, T. D.: A stochastic approach to enhanced diffusion. (2019) arXiv preprint arXiv:1911.09995

  17. Coti Zelati, M., Elgindi, T.M., Widmayer, K.: Enhanced dissipation in the Navier–Stokes equations near the Poiseuille flow. Comm. Math. Phys. 378, 987–1010 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Couder, Y.: Observation expérimentale de la turbulence bidimensionnelle dans un film liquide mince, Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l’univers, sciences de la terre 297, 641–645 (1983)

    Google Scholar 

  19. Dabkowski, M., Kiselev, A., Silvestre, L., Vicol, V.: Global well-posedness of slightly supercritical active scalar equations. Anal. PDE 7, 43–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Del Zotto, A.: Enhanced dissipation and transition threshold for the poiseuille flow in a periodic strip. (2021) arXiv preprint arXiv:2108.11602

  21. Ding, S., Lin, Z.: Enhanced dissipation and transition threshold for the 2-D plane Poiseuille flow via resolvent estimate. J. Differ. Equ. 332, 404–439 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Galeati, L., Gubinelli, M.: Mixing for generic rough shear flows. (2021) arXiv preprint arXiv:2107.12115

  24. Grenier, E., Nguyen, T.T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. J. Funct. Anal. 278, 108339 (2020). https://doi.org/10.1016/j.jfa.2019.108339. (http://www.sciencedirect.com/science/article/pii/S0022123619303337)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, S.: Enhanced dissipation, hypoellipticity for passive scalar equations with fractional dissipation. J. Funct. Anal. 282, 109319, 28 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ibrahim, S., Maekawa, Y., Masmoudi, N.: On pseudospectral bound for non-selfadjoint operators and its application to stability of Kolmogorov flows. Ann. PDE 5, 14, 84 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ju, N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Comm. Math. Phys. 251, 365–376 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kiselev, A., Nazarov, F.: Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation. Nonlinearity 23, 549–554 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kiselev, A., Ryzhik, L., Yao, Y., Zlatoš, A.: Finite time singularity for the modified SQG patch equation. Ann. Math. 184(2), 909–948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, H., Masmoudi, N., Zhao, W.: Asymptotic stability of two-dimensional couette flow in a viscous fluid. (2022) arXiv preprint arXiv:2208.14898

  32. Li, H., Masmoudi, N., Zhao, W.: New energy method in the study of the instability near couette flow. (2022) arXiv preprint arXiv:2203.10894

  33. Li, T., Wei, D., Zhang, Z.: Pseudospectral and spectral bounds for the Oseen vortices operator. Ann. Sci. Éc. Norm. Supér 53(4), 993–1035 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, Z., Xu, M.: Metastability of Kolmogorov flows and inviscid damping of shear flows. Arch. Ration. Mech. Anal. 231, 1811–1852 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Masmoudi, N., Zhao, W.: Enhanced dissipation for the 2D Couette flow in critical space, Commun. Part. Differ. Equ. 1–20 (2020)

  36. Masmoudi, N., Zhao, W.: Stability threshold of two-dimensional Couette flow in Sobolev spaces. Ann. Inst. H. Poincaré C Anal. Non Linéaire 39, 245–325 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Matthaeus, W., Stribling, W., Martinez, D., Oughton, S., Montgomery, D.: Decaying, two-dimensional, navier-stokes turbulence at very long times. Phys. D 51, 531–538 (1991)

    Article  MATH  Google Scholar 

  38. Pedlosky, J., et al.: Geophysical Fluid Dynamics, vol. 710. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  39. Resnick, S. G.: Dynamical problems in non-linear advective partial differential equations, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–The University of Chicago (1995)

  40. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 1–140 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. Sci. China Math. 64, 507–518 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei, D., Zhang, Z.: Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method. Sci. China Math. 62, 1219–1232 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963, 103 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiren Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, W. Metastability for the Dissipative Quasi-Geostrophic Equation and the Non-local Enhancement. Commun. Math. Phys. 401, 1383–1415 (2023). https://doi.org/10.1007/s00220-023-04671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04671-3

Navigation