Skip to main content
Log in

Variational Bihamiltonian Cohomologies and Integrable Hierarchies I: Foundations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This series of papers is devoted to the study of Virasoro symmetries of deformations of the Principal Hierarchy associated with a semisimple Frobenius manifold. The main tool we use is a generalization of the bihamiltonian cohomology called the variational bihamiltonian cohomology. In the present paper, we give its definition and compute the associated cohomology groups that will be used in our study of Virasoro symmetries. As an application of the variational bihamiltonian cohomology theory, we classify conformal bihamiltonian structures with semisimple hydrodynamic limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Buryak, A.: Double ramification cycles and integrable hierarchies. Commun. Math. Phys. 336(3), 1085–1107 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Buryak, A., Posthuma, H., Shadrin, S.: On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. J. Geom. Phys. 62(7), 1639–1651 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Buryak, A., Posthuma, H., Shadrin, S.: A polynomial bracket for the Dubrovin-Zhang hierarchies. J. Differ. Geom. 92(1), 153–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, G., Kramer, R., Shadrin, S.: Central invariants revisited. J. Éc. polytech. Math. 5(2018), 149–175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlet, G., Posthuma, H., Shadrin, S.: Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed. J. Differ. Geom. 108(1), 63–89 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne, P., Morgan, J.: Notes on supersymmetry (following Joseph Bernstein). In: Quantum felds and strings: a course for mathematicians, vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. American Mathematical Society, Providence, RI (1999)

  7. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Notes on topological string theory and 2D quantum gravity. In: String theory and quantum gravity (Trieste, 1990), pp. 91–156, World Scientific (1991)

  8. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological strings in d lees than 1. Nuclear Phys. B 352(1), 59–86 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dubrovin, B.: Integrable systems and classification of 2-dimensional topological field theories. In: Integrable systems (Luminy, 1991), pp. 313–359. Birkhäusee Boston, Boston (1993)

  10. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable systems and quantum groups (Montecatini Terme, 1993), pp. 120–348. Springer, Berlin (1996)

  11. Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl. Math. 59(4), 559–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubrovin, B., Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies II: the tau structures. Commun. Math. Phys. 361(2), 467–524 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dubrovin, B., Novikov, S.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitman averaging method. Dokl. Akad. Nauk SSSR 270(4), 781–785 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Dubrovin, B., Zhang, Y.: Bihamiltonian hierarchies in 2d topological field theory at one-loop approximation. Commun. Math. Phys. 198(2), 311–361 (1998)

    Article  ADS  MATH  Google Scholar 

  15. Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. 5(4), 423–466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. arXiv:math/0108160v1 [math.DG] (2001)

  17. Dubrovin, B., Zhang, Y.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250(1), 161–193 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Eguchi, T., Hori, K., Xiong, C.S.: Quantum cohomology and Virasoro algebra. Phys. Lett. B 402(1–2), 71–80 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Eguchi, T., Yamada, Y., Yang, S.K.: On the genus expansion in the topological string theory. Rev. Math. Phys. 7(03), 279–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. 178, 1–106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferapontov, E.: Compatible Poisson brackets of hydrodynamic type. J. Phys. A 34(11), 2377 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Getzler, E.: The Toda conjecture. In: Symplectic Geometry And Mirror Symmetry (Seoul, 2000), pp. 51–79. World Scientific (2001)

  23. Givental, A.B.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1(4), 551–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Givental, A.B.: Semisimple frobenius structures at higher genus. IMRN 2001(23), 1265–1286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Givental, A.B., Milanov, T.E.: Simple singularities and integrable hierarchies. In: The breadth of symplectic and Poisson geometry (Birkhäuser, Boston, 2005), pp. 173–201. Springer (2005)

  26. Hernández Iglesias, F., Shadrin, S.: Bi-Hamiltonian recursion, Liu-Pandharipande relations, and vanishing terms of the second Dubrovin-Zhang bracket. Commun. Math. Phys. 392(1), 55–87 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Liu, S.-Q.: Lecture notes on bihamiltonian structures and their central invariants. In: B-Model Gromov–Witten Theory (Birkhäuser, Cham, 2018), pp. 573–625. Springer (2018)

  29. Liu, S.-Q., Ruan, Y., Zhang, Y.: BCFG Drinfeld-Sokolov hierarchies and FJRW-theory. Invent. Math. 201(2), 711–772 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Liu, S.-Q., Wang, Z., Zhang, Y.: Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds arXiv:2109.01846 [math-ph] (2021)

  31. Liu, S.-Q., Wang, Z., Zhang, Y.: Super tau-covers of bihamiltonian integrable hierarchies. J. Geom. Phys. 170, 104351 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, S.-Q., Wang, Z., Zhang, Y.: Variational bihamiltonian cohomologies and integrable hierarchies II: Virasoro symmetries. Commun. Math. Phys. 395(1), 459–519 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Liu, S.-Q., Zhang, Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54(4), 427–453 (2005)

  34. Liu, S.-Q., Zhang, Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227(1), 73–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies I: a special case. Commun. Math. Phys. 324(3), 897–935 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lorenzoni, P.: Deformations of bi-Hamiltonian structures of hydrodynamic type. J. Geom. Phys. 44(2–3), 331–375 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Milanov, T., Shen, Y., Tseng, H.H.: Gromov-Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies. Geom. Topol. 20(4), 2135–2218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nuclear Phys. B 340(2–3), 281–332 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge. MA, 1990), pp. 243–310. Lehigh Univ, Bethlehem (1991)

  40. Zhang, Y.: On the \(CP^1\) topological sigma model and the Toda lattice hierarchy. J. Geom. Phys. 40(3–4), 215–232 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous referee for very helpful suggestions to improve the presentation of the paper. This work is supported by NSFC No. 12171268, No. 11725104 and No. 11771238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SQ., Wang, Z. & Zhang, Y. Variational Bihamiltonian Cohomologies and Integrable Hierarchies I: Foundations. Commun. Math. Phys. 401, 985–1031 (2023). https://doi.org/10.1007/s00220-023-04658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04658-0

Navigation