Skip to main content
Log in

The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the singularity near the degenerate points of the steady axisymmetric flow with general vorticity of an inviscid incompressible fluid acted on by gravity and with a free surface. We called the points on the free boundary at which the gradient of the stream function vanishes as the degenerate points. The main results in this paper give the different classifications of the singularity near the degenerate points on the free surface. More precisely, we obtained that at the stagnation points, the possible profiles must be a Stokes corner, a horizontal cusp, or a horizontal flatness. At the degenerate points on the symmetric axis except the origin, the wave profile must be a cusp. At the origin, the possible wave profiles must be a Garabedian pointed bubble, a horizontal cusp, or a horizontal flatness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Amick, C.J., Fraenkel, L.E., Toland, J.F.: On the stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 405–144 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Alt, H.W., Caffarelli, L.A., Friedman, A.: Jet flows with gravity. J. Reine Angew. Math. 35, 58–103 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Cheng, J.F., Du, L.L.: Compressible subsonic impinging flows. Arch. Ration. Mech. Anal. 230(2), 427–458 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, J.F., Du, L.L., Wang, Y.F.: The existence of steady compressible subsonic impinging jet flows. Arch. Ration. Mech. Anal. 229(3), 953–1014 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, J.F., Du, L.L., Xiang, W.: Incompressible jet flows in a de Laval nozzle with smooth detachment. Arch. Ration. Mech. Anal. 232(2), 1031–1072 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christodoulides, P., Dias, F.: Impact of a rising stream on a horizontal plate of finite extent. J. Fluid Mech. 621, 243–258 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57(4), 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Strauss, W., V\(\breve{a}\)rv\(\breve{a}\)ruc\(\breve{a}\), E.: Large-amplitude steady downstream water waves. Commun. Math. Phys. 387, 237–266 (2021)

  11. Doak, A., Vanden-Broeck, J.-M.: Solution selection of axisymmetric Taylor bubbles. J. Fluid Mech. 843, 518–535 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dubreil-Jacotin, M.L.: Sur la d\(\acute{e}\)termination rigoureuse des ondes permanentes p\(\acute{e}\)riodiques d’ampleur finie. J. Math. Pures Appl. 13, 217–291 (1934)

    MATH  Google Scholar 

  13. Du, L.L., Yang, C. L.: The free boundary of steady axisymmetric inviscid flow with vorticity \(II\): near the nondegenerate points, Preprint

  14. Friedman, A.: Axially symmetric cavities in rotational flows. Commun. Pure Appl. Math. 8, 949–997 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Garabedian, P.R.: A remark about pointed bubbles. Commun. Pure Appl. Math. 38(5), 609–612 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Keady, G., Norbury, J.: On the existence theory for irrotational water waves. Math. Proc. Camb. Philos. Soc. 83(1), 137–157 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krasovskii, Y.: On the theory of steady-state waves of finite amplitude. USSR Comput. Math. Math. Phys. 1, 996–1018 (1962)

    Article  Google Scholar 

  18. Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall Inc, Englewood Cliffs (1965)

    Book  MATH  Google Scholar 

  19. McLeod, J.B.: The Stokes and Krasovskii conjectures for the wave of greatest height. Stud. Appl. Math. 98(4), 311–333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nekrasov, A.I.: On steady waves. Izv. Ivanovo-Voznesensk. Politekhn. Inst. 3, 52–65 (1921). (in Russian)

    Google Scholar 

  21. Plotnikov, P.I.: Proof of the Stokes conjecture in the theory of surface waves. Stud. Appl. Math. 108(2), 217–244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plotnikov, P.I., Toland, J.F.: Convexity of Stokes waves of extreme form. Arch. Ration. Mech. Anal. 171(3), 349–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schulkes, R.M.S.M.: The evolution of capillary fountains. J. Fluid Mech. 261, 223–252 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. In: Mathematical and Physical Papers, vol. 1, pp. 225–228. Cambridge University Press, Cambridge (1880)

  25. Garcia, Smit Vega, M., V\(\breve{a}\)rv\(\breve{a}\)ruc\(\breve{a}\), E., Weiss, G. S.: Singularities in axisymmetric free boundaries for electrohydrodynamic equations. Arch. Ration. Mech. Anal. 222(2), 573–601 (2016)

  26. Toland, J.F.: On the existence of a wave of greatest height and Stokes’s conjecture. Proc. R. Soc. Lond. Ser. A 363(1715), 469–485 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. V\(\breve{a}\)rv\(\breve{a}\)ruc\(\breve{a}\), E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246(10), 4043–4076 (2009)

  28. V\(\breve{a}\)rv\(\breve{a}\)ruc\(\breve{a}\), E., Weiss, G.S.: Singularities of steady axisymmetric free surface flows with gravity. Commun. Pure Appl. Math. 67(8), 1263–1306 (2014)

  29. V\(\breve{a}\)rv\(\breve{a}\)ruc\(\breve{a}\), E., Weiss, G.S.: A geometric approach to generalized Stokes conjectures. Acta Math. 206(2), 363–403 (2011)

  30. V\(\breve{a}\)rv\(\breve{a}\)ruc\(\breve{a}\), E., Weiss, G.S.: The Stokes conjecture for waves with vorticity. Ann. Inst. H. Poincar\(\acute{e}\) Anal. Non Lin\(\acute{e}\)aire. 29(6), 861–885 (2012)

  31. Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138(1), 23–50 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Weiss, G.S.: Partial regularity for weak solutions of an elliptic free boundary problem. Commun. Partial Differ. Equ. 23(3–4), 439–455 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Weiss, G.S.: Partial regularity for a minimum problem with free boundary, (English summary). J. Geom. Anal. 9(2), 317–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for careful reading and for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Pu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Du and Huang are supported by National Nature Science Foundation of China Grant 11971331, 12125102, and Sichuan Youth Science and Technology Foundation 2021JDTD0024. Pu is supported by National Nature Science Foundation of China Grant 12201504.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Huang, J. & Pu, Y. The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point. Commun. Math. Phys. 400, 2137–2179 (2023). https://doi.org/10.1007/s00220-023-04651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04651-7

Navigation