Skip to main content
Log in

The Wiener Criterion for Nonlocal Dirichlet Problems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the boundary behavior of solutions to the Dirichlet problems for integro-differential operators with order of differentiability \(s \in (0, 1)\) and summability \(p>1\). We establish a nonlocal counterpart of the Wiener criterion, which characterizes a regular boundary point in terms of the nonlocal nonlinear potential theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkhutov, Y.A., Krasheninnikova, O.V.: Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition. Izv. Ross. Akad. Nauk Ser. Mat. 68(6), 3–60 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Nonlinear Dynamics and Evolution Equations, vol. 48 of Fields Inst. Commun., pp. 13–52. Amer. Math. Soc., Providence (2006)

  3. Bates, P.W., Chmaj, A.: A discrete convolution model for phase transitions. Arch. Ration. Mech. Anal. 150(4), 281–305 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Björn, J.: A Wiener criterion for the fractional Laplacian. arXiv preprint arXiv:2107.04364 (2021)

  5. Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\)-Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Cabré, X., Solà-Morales, J.: Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58(12), 1678–1732 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Figalli, A.: Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680, 191–233 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Chaker, J., Kim, M.: Regularity estimates for fractional orthotropic \(p\)-Laplacians of mixed order. Adv. Nonlinear Anal. 11(1), 1307–1331 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Chlebicka, I., Giannetti, F., Zatorska-Goldstein, A.: Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth. arXiv preprint arXiv:2006.02172 (2020)

  12. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Di Benedetto, E., Trudinger, N.S.: Harnack inequalities for quasiminima of variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 295–308 (1984)

    ADS  MathSciNet  Google Scholar 

  17. Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33(2), 377–416 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Dipierro, S., Savin, O., Valdinoci, E.: Boundary behavior of nonlocal minimal surfaces. J. Funct. Anal. 272(5), 1791–1851 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Dipierro, S., Savin, O., Valdinoci, E.: Boundary properties of fractional objects: flexibility of linear equations and rigidity of minimal graphs. J. Reine Angew. Math. 769, 121–164 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Dipierro, S., Savin, O., Valdinoci, E.: Nonlocal minimal graphs in the plane are generically sticky. Commun. Math. Phys. 376(3), 2005–2063 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Dyda, B.: On comparability of integral forms. J. Math. Anal. Appl. 318(2), 564–577 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Dyda, B., Kassmann, M.: On weighted Poincaré inequalities. Ann. Acad. Sci. Fenn. Math. 38(2), 721–726 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Dyda, B., Kassmann, M.: Regularity estimates for elliptic nonlocal operators. Anal. PDE 13(2), 317–370 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Eilertsen, S.: On weighted positivity and the Wiener regularity of a boundary point for the fractional Laplacian. Ark. Mat. 38(1), 53–75 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Farina, A., Valdinoci, E.: Rigidity results for elliptic PDEs with uniform limits: an abstract framework with applications. Indiana Univ. Math. J. 60(1), 121–141 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. 279(3–4), 779–809 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40(1), 235–253 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Foghem Gounoue, G.F.: \({L}^2\)-theory for nonlocal operators on domains. Ph.D. thesis, Universität Bielefeld (2020)

  29. Foghem Gounoue, G.F., Kassmann, M., Voigt, P.: Mosco convergence of nonlocal to local quadratic forms. Nonlinear Anal. 193, 111504, 22 (2020)

  30. Gariepy, R., Ziemer, W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Rational Mech. Anal. 67(1), 25–39 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  32. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011). Reprint of the 1985 original [MR0775683], with a foreword by Susanne C. Brenner

  34. Hadzhy, O.V., Voitovych, M.V.: Continuity at a boundary point of solutions to quasilinear elliptic equations with generalized Orlicz growth and non-logarithmic conditions. arXiv preprint arXiv:2109.08643 (2021)

  35. Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2008)

    MATH  Google Scholar 

  36. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc., Mineola (2006). Unabridged republication of the 1993 original

  37. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Kassmann, M.: A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris 349(11–12), 637–640 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19(4), 591–613 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172(1), 137–161 (1994)

    MathSciNet  MATH  Google Scholar 

  43. Korte, R., Kuusi, T.: A note on the Wolff potential estimate for solutions to elliptic equations involving measures. Adv. Calc. Var. 3(1), 99–113 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional \(p\)-Laplace type equations. J. Math. Pures Appl. 9(132), 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55(3), Art. 63, 29 (2016)

  46. Korvenpää, J., Kuusi, T., Palatucci, G.: Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations. Math. Ann. 369(3–4), 1443–1489 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Kurzke, M.: A nonlocal singular perturbation problem with periodic well potential. ESAIM Control Optim. Calc. Var. 12(1), 52–63 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337(3), 1317–1368 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Labutin, D.A.: Potential estimates for a class of fully nonlinear elliptic equations. Duke Math. J. 111(1), 1–49 (2002)

    MathSciNet  MATH  Google Scholar 

  50. Lee, K.-A., Lee, S.-C.: The Wiener criterion for elliptic equations with Orlicz growth. J. Differ. Equ. 292, 132–175 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Lian, Y., Zhang, K., Li, D., Hong, G.: Boundary Hölder regularity for elliptic equations. J. Math. Pures Appl. 9(143), 311–333 (2020)

    MATH  Google Scholar 

  52. Lindgren, E., Lindqvist, P.: Perron’s method and Wiener’s theorem for a nonlocal equation. Potential Anal. 46(4), 705–737 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Lindqvist, P., Martio, O.: Two theorems of N. Wiener for solutions of quasilinear elliptic equations. Acta Math. 155(3–4), 153–171 (1985)

    MathSciNet  MATH  Google Scholar 

  54. Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17, 43–77 (1963)

    MathSciNet  MATH  Google Scholar 

  55. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  56. Maz’ya, V.G.: On the continuity at a boundary point of solutions of quasi-linear elliptic equations. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25, 42–55 (1970)

    MathSciNet  MATH  Google Scholar 

  57. Maz’ya, V.G.: Behaviour of solutions to the Dirichlet problem for the biharmonic operator at a boundary point. In: Equadiff IV (Proceedings of Czechoslovak Conference on Differential Equations and their Applications, Prague, 1977), volume 703 of Lecture Notes in Math., pp. 250–262. Springer, Berlin (1979)

  58. Palatucci, G.: The Dirichlet problem for the \(p\)-fractional Laplace equation. Nonlinear Anal. 177(part B), 699–732 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6(1), 1–15 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Reifenberg, E.R.: Solution of the Plateau Problem for \(m\)-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)

    MathSciNet  MATH  Google Scholar 

  61. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101(3), 275–302 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Ros-Oton, X., Serra, J.: Boundary regularity estimates for nonlocal elliptic equations in \(C^1\) and \(C^{1,\alpha }\) domains. Ann. Mat. Pura Appl. (4) 196(5), 1637–1668 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Salort, A.M.: Eigenvalues and minimizers for a non-standard growth non-local operator. J. Differ. Equ. 268(9), 5413–5439 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    MathSciNet  MATH  Google Scholar 

  65. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    MathSciNet  MATH  Google Scholar 

  66. Trudinger, N.S., Wang, X.-J.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124(2), 369–410 (2002)

    MathSciNet  MATH  Google Scholar 

  67. Wiener, N.: Certain notions in potential theory. J. Math. Phys. 3(1), 24–51 (1924)

    MATH  Google Scholar 

  68. Wiener, N.: The Dirichlet problem. J. Math. Phys. 3(3), 127–146 (1924)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Chan Lee.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Communicated by K. Nakanishi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Minhyun Kim gratefully acknowledges financial support by the German Research Foundation (GRK 2235 - 282638148). The research of Ki-Ahm Lee is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP): NRF-2021R1A4A1027378. Se-Chan Lee is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1A6A3A01086546).

Appendix A. Algebraic Inequalities

Appendix A. Algebraic Inequalities

In this section, we provide some algebraic inequalities that are used in the Caccioppoli-type estimates. Let \(p \in (1, \infty )\) and \(\beta , \gamma \in \mathbb {R}\) be such that \(\beta = \gamma -(p-1)\). Recall that, in the local case, we use the following inequalities for the proof of Caccioppoli-type estimates [31, Theorem 8.25 and 8.26]: assume \(\beta \ne 0\), \(\gamma \ne 0\), and let \(l \ge 0\). Then, there exists constants \(c, C > 0\), depending only on p, such that

$$\begin{aligned} \begin{aligned} |\nabla u|^{p-2} \nabla u \cdot \nabla (f(u) \eta ^p)&\ge |\nabla F(u)|^p \eta ^p - \frac{|\gamma |}{|\beta |} |\nabla F(u)|^{p-1} \eta ^{p-1} |F(u)| |\nabla \eta | \\&\ge \frac{1}{p} \left( |\nabla F(u)|^p \eta ^p - \left( \frac{|\gamma |}{|\beta |} \right) ^p |F(u)|^{p} |\nabla \eta |^p \right) \\&\ge c \, |\nabla (F(u) \eta )|^p - C \left( 1+\left( \frac{|\gamma |}{|\beta |} \right) ^p \right) |F(u)|^p |\nabla \eta |^p, \end{aligned} \end{aligned}$$

where \(f, F: I \rightarrow [0, \infty )\) are defined by

$$\begin{aligned} f(t) = \frac{1}{\beta } \left( (t+d)^{\beta } - (l+d)^{\beta } \right) \quad \text {and}\quad F(t) = \frac{p}{\gamma } (t+d)^{\gamma /p}. \end{aligned}$$
(A.1)

Here, \(I = [l, \infty )\) when \(\beta > 0\) and \(I = [0, l]\) when \(\beta < 0\). As a discrete version, we prove the following algebraic inequality.

Lemma A.1

Assume that \(\beta \ne 0\) and \(\gamma \ne 0\). There exist \(c, C > 0\), depending only on p, such that

$$\begin{aligned} \begin{aligned}&|a-b|^{p-2}(a-b) (f(a) \eta _1^p - f(b) \eta _2^p) \\&\quad \ge c \left| F(a) \eta _1 - F(b) \eta _2 \right| ^p - C \left( 1+ \left( \frac{|\gamma |}{|\beta |} \right) ^p \right) \max \lbrace |F(a)|, |F(b)| \rbrace ^p |\eta _1-\eta _2|^p \end{aligned} \end{aligned}$$

for any \(a, b \in I\) and \(\eta _1, \eta _2 \ge 0\).

Some inequalities similar to Lemma A.1 are known for almost all values of \(\beta \). See, for instance, [5] for \(\beta \ge 1\) and [10] for \(\beta < -(p-1)\). Lemma A.1 can be proved in a similar way, but let us provide a proof to make the paper self-contained. To this end, we first prove the following two lemmas as intermediate steps.

Lemma A.2

If \(\beta \ne 0\) and \(\gamma \ne 0\), then

$$\begin{aligned} |a-b|^{p-2}(a-b)(f(a)-f(b)) \ge |F(a)-F(b)|^p \end{aligned}$$

and

$$\begin{aligned} |a-b|^{p-1} \min \left\{ F'(a), F'(b) \right\} ^{p-1} \le |F(a)-F(b)|^{p-1} \end{aligned}$$

for any \(a, b \in I\).

Proof

We may assume that \(a>b\). Then, we have

by Jensen’s inequality, and

since \(F'\) is positive on \([0, \infty )\). \(\square \)

Lemma A.3

Let \(A, B \in \mathbb {R}\) and \(\eta _1, \eta _2 \ge 0\), then

$$\begin{aligned} \begin{aligned} |A-B|^p \min \lbrace \eta _1, \eta _2 \rbrace ^p&\ge 2^{1-p} |A \eta _1 - B \eta _2|^p - \max \lbrace |A|, |B| \rbrace ^p |\eta _1-\eta _2|^p \quad \text {and} \\ |A-B|^p \max \lbrace \eta _1, \eta _2 \rbrace ^p&\le 2^{p-1} |A \eta _1 - B \eta _2|^p + 2^{p-1} \max \lbrace |A|, |B| \rbrace ^p |\eta _1-\eta _2|^p. \end{aligned} \end{aligned}$$

Proof

We may assume that \(\eta _1 \ge \eta _2\). Then, the desired inequalities follow from the equalities

$$\begin{aligned} A\eta _1 - B\eta _2 = (A-B) \eta _2 + A (\eta _1-\eta _2) = (A-B) \eta _1 + B (\eta _1-\eta _2) \end{aligned}$$

and the triangle inequality. \(\square \)

We prove Lemma A.1 by using Lemmas A.2 and A.3.

Proof of Lemma A.1

We may assume that \(a > b\). Then, we have

$$\begin{aligned}&(a-b)^{p-1} (f(a) \eta _1^p - f(b) \eta _2^p) \nonumber \\ {}&= (a-b)^{p-1}(f(a) - f(b))\eta _1^p + (a-b)^{p-1} f(b)(\eta _1^p-\eta _2^p) \end{aligned}$$
(A.2)
$$\begin{aligned} \nonumber \\ {}&= (a-b)^{p-1}(f(a) - f(b))\eta _2^p + (a-b)^{p-1} f(a)(\eta _1^p-\eta _2^p). \end{aligned}$$
(A.3)

We apply Lemma A.2 to (A.2) if \(\beta \ge 1\) or to (A.3) if \(\beta \le 1\). Then, we obtain

$$\begin{aligned} \begin{aligned} J :=&~ (a-b)^{p-1} (f(a) \eta _1^p - f(b) \eta _2^p) \\ \ge&~ |F(a)-F(b)|^p \min \lbrace \eta _1, \eta _2 \rbrace ^p \\ {}&-|F(a)-F(b)|^{p-1} \max \left\{ \frac{|f(a)|}{F'(a)^{p-1}}, \frac{|f(b)|}{F'(b)^{p-1}} \right\} |\eta _1^p-\eta _2^p|. \end{aligned} \end{aligned}$$

By using

$$\begin{aligned} \frac{|f(t)|}{F'(t)^{p-1}} \le \frac{|\gamma |}{p|\beta |} |F(t)|, \quad |\eta _1^p-\eta _2^p| \le p |\eta _1-\eta _2|\max \lbrace \eta _1, \eta _2 \rbrace ^{p-1}, \end{aligned}$$

and Young’s inequality, we deduce

$$\begin{aligned} \begin{aligned} J&\ge |F(a)-F(b)|^p \min \lbrace \eta _1, \eta _2 \rbrace ^p \\&\quad - \frac{1}{2^{2p-1}} |F(a)\!-\!F(b)|^p \max \lbrace \eta _1, \eta _2 \rbrace ^p \!-\! C \left( \frac{|\gamma |}{|\beta |} \right) ^p \max \lbrace |F(a)|, |F(b)| \rbrace ^p |\eta _1 \!-\! \eta _2|^p, \end{aligned} \end{aligned}$$

where \(C = C(p) > 0\). Applying Lemma A.3 with \(A = F(a)\) and \(B = F(b)\) finishes the proof. \(\square \)

The case \(\gamma = 0\), or equivalently \(\beta = -(p-1)\), is treated in the following lemma, which is a discrete version of

$$\begin{aligned} |\nabla u|^{p-2} \nabla u \cdot \nabla (f(u) \eta ^p) \ge c |\nabla \log (u+d)|^p \eta ^p - C |\nabla \eta |^p, \end{aligned}$$

where f is given by (A.1) with \(\beta = -(p-1)\) and \(c, C > 0\) are constants depending only on p.

Lemma A.4

Assume that \(\gamma = \beta + p-1 = 0\). There exist \(c, C > 0\), depending only on p, such that

$$\begin{aligned} \begin{aligned}{}&{} |a-b|^{p-2}(a-b) (f(a)\eta _1^p - f(b)\eta _2^p)\\{}&{} \quad \ge c\, |\log (a+d)- \log (b+d)|^p \min \lbrace \eta _1, \eta _2 \rbrace ^p - C |\eta _1-\eta _2|^p \end{aligned} \end{aligned}$$

for any \(a, b \in I\) and \(\eta _1, \eta _2 \ge 0\).

Proof

We may assume that \(a > b\). By applying [14, Lemma 3.1] to \(\eta _1\) and \(\eta _2\) with

$$\begin{aligned} \varepsilon = \delta \frac{a-b}{a+d} \in (0,1), \quad \delta \in (0, 1), \end{aligned}$$

we have

$$\begin{aligned} \eta _1^p - \eta _2^p \le C \varepsilon \eta _2^p + C \varepsilon ^{1-p} |\eta _1-\eta _2|^p, \end{aligned}$$

where \(C = C(p) > 0\). Thus, it follows from (A.3) and \(f(a) \ge \frac{1}{1-p}(a+d)^{1-p}\) that

$$\begin{aligned} \begin{aligned} K :=&~ (a-b)^{p-1}(f(a)\eta _1^p - f(b)\eta _2^p) \\ \ge&~ (a-b)^{p-1} (f(a)-f(b)) \eta _2^p - C\delta \left( \frac{a-b}{a+d} \right) ^p \eta _2^p - C \delta ^{1-p} |\eta _1-\eta _2|^p. \end{aligned} \end{aligned}$$

By using the same arguments as in the proof of Lemma A.2, we obtain

$$\begin{aligned} \left( \frac{a-b}{a+d} \right) ^{p} \le |\log (a+d) - \log (b+d)|^p \le (a-b)^{p-1}(f(a)-f(b)). \end{aligned}$$

Therefore, we deduce that

$$\begin{aligned} K \ge (1-C\delta ) |\log (a+d) - \log (b+d)|^p \eta _2^p - C \delta ^{1-p} |\eta _1-\eta _2|^p, \end{aligned}$$

from which we conclude the lemma by taking \(\delta \) sufficiently small. \(\square \)

We also provide the following algebraic inequality, which is similar to Lemma A.1.

Lemma A.5

Let \(a, b \in \mathbb {R}\), \(\eta _1, \eta _2 \ge 0\), and assume that \(\gamma \) satisfies (5.3). Let \(\tau = \gamma /(p-1)\) and \(q = p\gamma /(p-\gamma /(p-1))\), then

$$\begin{aligned} \begin{aligned}&|a-b|^{p-2}(a-b)(g(a_+) \eta _1^p - g(b_+) \eta _2^p) \\&\quad \ge c\, |G(a_+) \eta _1 - G(b_+)\eta _2|^p - C \max \lbrace (1+a_+)^{\gamma }, (1+b_+)^{\gamma } \rbrace \textbf{1}_{\lbrace a>0 \rbrace } \textbf{1}_{\lbrace b>0 \rbrace } |\eta _1 - \eta _2|^p, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} g(t) = \frac{1}{\tau -1}(1-(1+t)^{1-\tau }), \quad G(t) = \frac{q}{\gamma }((1+t)^{\gamma /q}-1), \end{aligned}$$

and \(c, C > 0\) are constants depending only on p.

Proof

We may assume that \(a>b\). The same arguments as in the proof of Lemma A.2 show that

$$\begin{aligned} (a_+-b_+)^{p-1} (g(a_+) - g(b_+)) \ge |G(a_+) - G(b_+)|^p \end{aligned}$$
(A.4)

and

$$\begin{aligned} (a_+-b_+)^{p-1} g'(a_+)^{\frac{p-1}{p}} \le |G(a_+)-G(b_+)|^{p-1}. \end{aligned}$$

The case \(b \le 0\) follows from (A.4). Thus, we assume \(b > 0\). Since \(a-b \ge a_+ - b_+\), \((a-b)^{p-1} g(b_+) = (a_+ - b_+)^{p-1} g(b_+)\), and \(g(b_+) \le 1\), we obtain

$$\begin{aligned} \begin{aligned} L&:= (a-b)^{p-1} (g(a_+) \eta _1^p - g(b_+) \eta _2^p) \\&= (a-b)^{p-1} ((g(a_+) - g(b_+)) \eta _1^p + g(b_+) (\eta _1^p - \eta _2^p)) \\&\ge (a_+-b_+)^{p-1} ((g(a_+) - g(b_+)) \eta _1^p + g(b_+) (\eta _1^p - \eta _2^p)) \\&\ge |G(a_+) - G(b_+)|^p \eta _1^p - p(a_+-b_+)^{p-1} |\eta _1-\eta _2| \max \lbrace \eta _1, \eta _2 \rbrace ^{p-1} \\&\ge |G(a_+) - G(b_+)|^p \eta _1^p - p |G(a_+)-G(b_+)|^{p-1} \\ {}&\quad \max \lbrace \eta _1, \eta _2 \rbrace ^{p-1} g'(a_+)^{-\frac{p-1}{p}} |\eta _1-\eta _2|. \end{aligned} \end{aligned}$$

By using Young’s inequality, Lemma A.3, and \(G(t)^p \le C (1+t)^{\gamma }\), we conclude that

$$\begin{aligned} \begin{aligned} L&\ge |G(a_+) - G(b_+)|^p \min \lbrace \eta _1, \eta _2 \rbrace ^p \\&\quad - \frac{1}{2^{2p-1}} |G(a_+)-G(b_+)|^{p} \max \lbrace \eta _1, \eta _2 \rbrace ^{p} - C \frac{1}{g'(a_+)^{p-1}} |\eta _1-\eta _2|^p \\&\ge \frac{1}{2^{p}} |G(a_+)\eta _1 - G(b_+)\eta _2|^p - C \max \lbrace (1+a_+)^{\gamma }, (1+b_+)^{\gamma } \rbrace |\eta _1 - \eta _2|^p, \end{aligned} \end{aligned}$$

where \(C = C(p) > 0\). \(\square \)

Let us finish the section with one more algebraic inequality.

Lemma A.6

Let \(a, b > 0\) and assume that \(\gamma < p\), \(\gamma \ne 0\). Then,

$$\begin{aligned} \max \lbrace a, b \rbrace ^{\gamma -p} |a-b|^p \le \left( \frac{p}{|\gamma |} \right) ^p |a^{\gamma /p} - b^{\gamma /p}|^p. \end{aligned}$$

Proof

We may assume without loss of generality that \(a > b\). Then,

$$\begin{aligned} |a^{\gamma /p}-b^{\gamma /p}|^p = \left| \int _b^a \frac{\gamma }{p} t^{\gamma /p-1} \,\textrm{d}t \right| ^p \ge \left| \frac{\gamma }{p} \right| ^p a^{\gamma -p} (a-b)^p, \end{aligned}$$

where we use the monotonicity of \(t \mapsto t^{\gamma /p-1}\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, KA. & Lee, SC. The Wiener Criterion for Nonlocal Dirichlet Problems. Commun. Math. Phys. 400, 1961–2003 (2023). https://doi.org/10.1007/s00220-023-04632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04632-w

Navigation