Skip to main content
Log in

Holographic Relative Entropy in Infinite-Dimensional Hilbert Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We reformulate entanglement wedge reconstruction in the language of operator-algebra quantum error correction with infinite-dimensional physical and code Hilbert spaces. Von Neumann algebras are used to characterize observables in a boundary subregion and its entanglement wedge. Assuming that the infinite-dimensional von Neumann algebras associated with an entanglement wedge and its complement may both be reconstructed in their corresponding boundary subregions, we prove that the relative entropies measured with respect to the bulk and boundary observables are equal. We also prove the converse: when the relative entropies measured in an entanglement wedge and its complement equal the relative entropies measured in their respective boundary subregions, entanglement wedge reconstruction is possible. Along the way, we show that the bulk and boundary modular operators act on the code subspace in the same way. For holographic theories with a well-defined entanglement wedge, this result provides a well-defined notion of holographic relative entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The causal complement of a region R, denoted by \(R^\prime \), is defined to be all of the points in spacetime which are spacelike separated from every point in R. A region R is causally complete if \(R^{\prime \prime } = R\). Note that any von Neumann algebra M satisfies \(M = M^{\prime \prime }\), where the \(\prime \) denotes the commutant.

  2. This means that u is a norm-preserving map. The map u need not be a bijection. In general, \(u^\dagger u\) is the identity on \(\mathcal {H}_{code}\) and \(uu^\dagger \) is a projection on \(\mathcal {H}_{phys}\).

  3. This is because we may act with an operator in \(M_{code}\) to send \({|{\Psi }\rangle }\) to a vector arbitrarily close to \({|{\Omega }\rangle }\), and we may act with an operator in \(M_{phys}\) to send \(u{|{\Omega }\rangle }\) arbitrarily close to any vector in \(\mathcal {H}_{phys}\).

  4. With the relation for the Tomita operators we derived above, we obtain a relation for the relative modular operators \(\Delta ^c_{\Psi | \Phi }\) and \(\Delta ^p_{u \Psi | u \Phi }\) to be \(u\Delta ^c_{\Psi | \Phi } = \Delta ^p_{u \Psi | u \Phi } u\).

  5. We apply the spectral theorem separately for the restriction of \(\Delta ^p_{u \Psi | u \Phi }\) to \(\text {Im } u\) and \((\text {Im } u)^\perp \).

  6. We use the relation \(\Delta ^c_{\Psi | \Phi } = u^\dagger \Delta ^p_{u \Psi | u \Phi } u\). For the projections, \(\Omega \) denotes a measurable subset of \({\mathbb {R}}\)

  7. Note that \(\mathcal {O}\) need not be self-adjoint.

  8. To be explicit, we have that

    $$\begin{aligned} {\langle {(\mathcal {O}- \lambda I)\chi |(\mathcal {O}- \lambda I)\chi }\rangle } = {\langle {(\mathcal {O}- \lambda _1 I)\chi |(\mathcal {O}- \lambda _1 I)\chi }\rangle } + {\langle {\lambda _2\chi | \lambda _2 \chi }\rangle } + i \lambda _2 {\langle {\chi |(\mathcal {O}- \lambda _1 I )\chi }\rangle } - i \lambda _2 {\langle { (\mathcal {O}- \lambda _1I)\chi |\chi }\rangle }. \end{aligned}$$

    The last two terms cancel because \(\mathcal {O}\) is self-adjoint and \(\lambda _1\) is real.

  9. For any \({|{\psi }\rangle } \in D(\mathcal {O})\), the integral \(\int _{\mathbb {R}} \lambda d(P^\mathcal {O}_\lambda {|{\psi }\rangle })\) with vector-valued measure \(P^\mathcal {O}_\Omega {|{\psi }\rangle }\) converges in the Hilbert space norm to \(\mathcal {O}{|{\psi }\rangle }\). The integral does not converge for \({|{\psi }\rangle } \notin D(\mathcal {O})\).

  10. In other words, \(e_\Psi \) is an injective map.

  11. \(S_{\Psi | \Phi }\) is well-defined if and only if \(\lim _{n \rightarrow \infty } \mathcal {O}_n {|{\Psi }\rangle } = 0 \implies \lim _{n \rightarrow \infty } \mathcal {O}_n^\dagger {|{\Psi }\rangle } = 0\). See footnote 14 of [14] for a proof of why this is true. \(S_{\Psi | \Phi }\) is densely defined because \({|{\Psi }\rangle }\) is cyclic with respect to M.

  12. \((\Delta ^p_{u \Psi | u\Phi })|_{\text {Im } u}\) denotes the restriction of \(\Delta ^p_{u \Psi | u\Phi }\) to the closed subspace \(\text {Im } u\).

  13. Assuming that the time-slice axiom [15] holds, \(\mathcal {A}(\mathcal {U})\) should really be associated with the domain of dependence of \(\mathcal {U}\), as operators in the domain of dependence are related to operators in \(\mathcal {U}\) via an equation of motion. Note that the time-slice axiom does not hold for generalized free fields [28], which we consider in Sect. 6.2.

  14. If a subalgebra \(\mathcal {S}\) of bounded operators contains the identity and is closed under hermitian conjugation, then its double commutant, \(S^{\prime \prime }\), is the von Neumann algebra generated by \(\mathcal {S}\). Von Neumann algebras are naturally associated with causally complete subregions [14, 23].

  15. Associating a set of operators with a subregion in the bulk is highly nontrivial due to nonlocal effects in the bulk [29]. This is addressed in [30], which studies information measures for sets of operators that are not closed under multiplication. We do not consider this subtlety in our analysis.

  16. It will be interesting to generalize equation (5.4) in [31] to an expression that uses infinite-dimensional von Neumann algebras.

  17. In certain contexts, the entanglement wedge reconstruction proposal must be nonperturbatively approximate (see [32, 33]). The approximate reconstruction with nonperturbative gravity corrections is rigorously formulated and analyzed in [36], that further expands the scope of our algebraic framework.

  18. The fact that all correlation functions may be expressed in terms of two-point functions arises from large-N factorization in the boundary CFT.

  19. This statement is also true for conformal transformations of such regions. For these boundary regions, the causal wedge is the same as the entanglement wedge [37].

  20. Technically, a spatial slice is not an open subregion of spacetime.

  21. If \(\mathcal {H}_0\) is a proper subset of \(\mathcal {H}_{code}\), we should redefine \(\mathcal {H}_{code}\) to be \(\mathcal {H}_0\) for Theorem 1.1 to apply.

  22. The definition of a type \(\hbox {III}_1\) factor is given in [41].

References

  1. Casini, H., Huerta, M., Myers, R.C., Yale, A.: Mutual information and the F-theorem. JHEP 10, 003 (2015). arXiv:1506.06195

  2. Casini, H., Huerta, M.: A c-theorem for the entanglement entropy. J. Phys. A: Math. Theor. 40, 7031 (2007). arXiv:cond-mat/0610375

  3. Klebanov, I.R., Kutasov, D., Murugan, A.: Entanglement as a probe of confinement. Nucl. Phys. B 796, 274 (2008). arXiv:0709.2140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Levin, M., Wen, X.-G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006). arXiv:cond-mat/0510613

    Article  ADS  Google Scholar 

  5. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006). arXiv:hep-th/0510092

    Article  ADS  MathSciNet  Google Scholar 

  6. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hamilton, A., Kabat, D.N., Lifschytz, G., Lowe, D.A.: Holographic representation of local bulk operators. Phys. Rev. D 74, 066009 (2006). arXiv:hep-th/0606141

    Article  ADS  MathSciNet  Google Scholar 

  8. Hamilton, A., Kabat, D., Lifschytz, G., Lowe, D.A.: Local bulk operators in AdS/CFT: a boundary view of horizons and locality. Phys. Rev. D 73, 086003 (2006). arXiv:hep-th/0506118

    Article  ADS  Google Scholar 

  9. Almheiri, A., Dong, X., Harlow, D.: Bulk locality and quantum error correction in AdS/CFT. JHEP 1504, 163 (2015). arXiv:1411.7041

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Jafferis, D.L., Lewkowycz, A., Maldacena, J., Suh, S.J.: Relative entropy equals bulk relative entropy. JHEP 1606, 004 (2016). arXiv:1512.06431

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Headrick, M., Hubeny, V.E., Lawrence, A., Rangamani, M.: Causality & holographic entanglement entropy. JHEP 12, 162 (2014). arXiv:1408.6300

    Article  ADS  Google Scholar 

  12. Dong, X., Harlow, D., Wall, A.C.: Reconstruction of bulk operators within the entanglement wedge in gauge–gravity duality. Phys. Rev. Lett. 117, 021601 (2016). arXiv:1601.05416

    Article  ADS  MathSciNet  Google Scholar 

  13. Harlow, D.: The Ryu–Takayanagi formula from quantum error correction. Commun. Math. Phys. 354, 865 (2017). arXiv:1607.03901

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Witten, E.: Notes on some entanglement properties of quantum field theory, arXiv:1803.04993

  15. Haag. R.: Local Quantum Physics. Springer-Verlag, (1992)

  16. Araki, H.: Relative entropy of states of von Neumann algebras, Publ. RIMS, Kyoto Univ. 11, 809 (1976)

    Article  MATH  Google Scholar 

  17. Bisognano, J.J., Wichmann, E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  18. Longo, R., Xu, F.: Relative Entropy in CFT, arXiv:1712.07283

  19. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Reeh, H., Schlieder, S.: Bemerkungen zur Unitaaraquivalenz von Lorentzinvarienten Feldern. Nuovo Cimento 22, 1051 (1961)

    Article  Google Scholar 

  21. Connes, A., Størmer, E.: Homogeneity of the state space of factors of type \(\text{ III}_1\). J. Funct. Anal. 28, 187 (1978)

    Article  MATH  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, New York (1980)

    MATH  Google Scholar 

  23. Jones, V.: Von Neumann algebras, https://math.vanderbilt.edu/jonesvf/

  24. Casini, H., Teste, E., Torroba, G.: Relative entropy and the RG flow. JHEP 2017, 89 (2017). arXiv:1611.00016

    Article  MathSciNet  MATH  Google Scholar 

  25. Casini, H.: Relative entropy and the Bekenstein bound. Class. Quant. Grav. 25, 205021 (2008). arXiv:0804.2182

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and its Application. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  27. Baumgaärtel, H., Wollenberg, M.: Causal Nets of Operator Algebras: Mathematical Aspects of Algebraic Quantum Field Theory. Akademie Verlag, Berlin (1992)

    Google Scholar 

  28. Duetsch, M., Rehren, K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann Henri Poincaré 4, 613 (2003). arXiv:math-ph/0209035

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ghosh, S., Raju, S.: Loss of locality in gravitational correlators with a large number of insertions. Phys. Rev. D 96, 066033 (2017). arXiv:1706.07424

    Article  ADS  MathSciNet  Google Scholar 

  30. Ghosh, S., Raju, S.: Quantum information measures for restricted sets of observables. Phys. Rev. D 98, 046005 (2018). arXiv:1712.09365

    Article  ADS  MathSciNet  Google Scholar 

  31. Dong, X., Lewkowycz, A.: Entropy, extremality, euclidean variations, and the equations of motion. JHEP 01, 081 (2018). arXiv:1705.08453

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Hayden, P., Penington, G.: Learning the alpha-bits of black holes, arXiv:1807.06041

  33. Kelly, W.R.: Bulk locality and entanglement swapping in AdS/CFT. JHEP 03, 153 (2017). arXiv:1610.00669

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Faulkner, T., Lewkowycz, A., Maldacena, J.: Quantum corrections to holographic entanglement entropy. JHEP 11, 074 (2013). arXiv:1307.2892

    Article  ADS  MATH  Google Scholar 

  35. Cotler, J., Hayden, P., Penington, G., Salton, G., Swingle, B., Walter, M.: Entanglement wedge reconstruction via universal recovery channels, arXiv:1704.05839

  36. Gesteau, E., Kang, M.J.: Nonperturbative gravity corrections to bulk reconstruction, arXiv:2112.12789 [hep-th]

  37. Rangamani, M., Takayanagi, T.: Holographic entanglement entropy. Lect. Notes Phys. 931, 1 (2017). arXiv:1609.01287

    Article  MathSciNet  MATH  Google Scholar 

  38. Morrison, I.A.: Boundary-to-bulk maps for AdS causal wedges and the Reeh–Schlieder property in holography. JHEP 5, 53 (2014). arXiv:1403.3426

    Article  ADS  Google Scholar 

  39. Rajagopal, S.: Von Neumann algebras in Field Theory, MIT, PhD Dissertation

  40. Lashkari, N., Liu, H., Rajagopal, S.: Modular flow of excited states. JHEP 09, 166 (2021). arXiv:1811.05052

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kang, M.J., Kolchmeyer, D.K.: Entanglement wedge reconstruction of infinite-dimensional von neumann algebras using tensor networks, arXiv:1910.06328

  42. Harlow, D.: TASI Lectures on the Emergence of the Bulk in AdS/CFT, arXiv:1802.01040

  43. Pastawski, F., Yoshida, B., Harlow, D., Preskill, J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. JHEP 1506, 149 (2015). arXiv:1503.06237

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Czech, B., Karczmarek, J.L., Nogueira, F., Raamsdonk, M.V.: The gravity dual of a density matrix. Class. Quant. Grav. 29, 155009 (2012). arXiv:1204.1330

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Daniel Harlow, Temple He, Sungkyung Kang, and Kai Xu for discussions. M.J.K. and D.K. would like to acknowledge support from NSF grant PHY-1352084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Jinwoo Kang.

Additional information

Communicated by N. Linden.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M.J., Kolchmeyer, D.K. Holographic Relative Entropy in Infinite-Dimensional Hilbert Spaces. Commun. Math. Phys. 400, 1665–1695 (2023). https://doi.org/10.1007/s00220-022-04627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04627-z

Navigation