Skip to main content
Log in

Elliptic Dimers on Minimal Graphs and Genus 1 Harnack Curves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive study of the dimer model on infinite minimal graphs with Fock’s elliptic weights (Fock, Inverse spectral problem for GK integrable system. arXiv e-prints arXiv:1503.00289, 2015). Specific instances of such models were studied in Boutillier et al. (Invent Math 208(1):109–189, 2017), Boutillier et al. (Probability theory and related fields, 2018) and de Tilière (Electron J Probab 26:1–86, 2021); we now handle the general genus 1 case, thus proving a non-trivial extension of the genus 0 results of Kenyon (Invent Math 150(2):409–439, 2002) and Kenyon and Okounkov (Duke Math J 131(3):499–524, 2006) on isoradial critical models. We give an explicit local expression for a two-parameter family of inverses of the Kasteleyn operator with no periodicity assumption on the underlying graph. When the minimal graph satisfies a natural condition, we construct a family of dimer Gibbs measures from these inverses, and describe the phase diagram of the model by deriving asymptotics of correlations in each phase. In the \(\mathbb {Z}^2\)-periodic case, this gives an alternative description of the full set of ergodic Gibbs measures constructed in Kenyon et al. (Ann Math 163(3):1019–1056, 2006). We also establish a correspondence between elliptic dimer models on periodic minimal graphs and Harnack curves of genus 1. Finally, we show that a bipartite dimer model is invariant under the shrinking/expanding of 2-valent vertices and spider moves if and only if the associated Kasteleyn coefficients are antisymmetric and satisfy Fay’s trisecant identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Not applicable to this article since no data sets were generated or analysed during the current study.

Notes

  1. Note that in the terminology of this paper, the most natural term would be t-immersion but we chose the terminology suited to the papers cited in this section.

References

  1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc., London (1982)

    MATH  Google Scholar 

  2. Boutillier, C., Cimasoni, D., de Tilière, B.: Isoradial immersions. J. Graph Theory 99(4), 715–757 (2022)

    Article  MathSciNet  Google Scholar 

  3. Boutillier, C., Cimasoni, D, de Tilière, B.: Dimers on minimal graphs and genus \(g\) Harnack curves. Probab. Math. Phys. (2023)

  4. Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Rel Fields 147(3), 379–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boutillier, C., de Tilière, B.: The critical \(Z\)-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301(2), 473–516 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Boutillier, C., de Tilière, B., Raschel, K.: The \(Z\)-invariant massive Laplacian on isoradial graphs. Invent. Math. 208(1), 109–189 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Boutillier, C., de Tilière, B., Kilian, R.: The Z-invariant Ising model via dimers. In: Probability Theory and Related Fields (2018)

  8. Boutillier, C.: Pattern densities in non-frozen planar dimer models. Commun. Math. Phys. 271(1), 55–91 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brugallé, E.: Pseudoholomorphic simple Harnack curves. Enseign. Math. 61(3–4), 483–498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chelkak, D., Laslier, B., Russkikh, M.: Marianna dimer model and holomorphic functions on t-embeddings of planar graphs. arXiv e-prints arXiv:2001.11871 (2020)

  12. Chelkak, D., Laslier, B., Russkikh, M.: Bipartite dimer model: perfect t-embeddings and Lorentz-minimal surfaces. arXiv e-prints arXiv:2109.06272 (2021)

  13. Dobrušin, R.L.: Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Verojatnost. i Primenen 13, 201–229 (1968)

    MathSciNet  Google Scholar 

  14. de Tilière, B.: Quadritilings of the plane. Probab. Theory Relat. Fields 137(3–4), 487–518 (2007)

    MATH  Google Scholar 

  15. de Tilière, B.: Scaling limit of isoradial dimer models and the case of triangular quadritilings. Ann. Inst. Henri Poincaré Probab. Stat. 43(6), 729–750 (2007)

    Article  ADS  MATH  Google Scholar 

  16. de Tilière, B.: The Z-dirac and massive Laplacian operators in the Z-invariant Ising model. Electron. J. Probab. 26, 1–86 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fay, J.D.: Theta Functions on Riemann Surfaces, vol. 352. Springer, Cham (1973)

    MATH  Google Scholar 

  18. Fock, V.V.: Inverse spectral problem for GK integrable system. arXiv e-prints arXiv:1503.00289 (2015)

  19. George, T.: Spectra of biperiodic planar networks. arXiv e-prints arXiv:1901.06353 (2019)

  20. Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. 46(5), 747–813 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  22. Gulotta, D.R.: Properly ordered dimers, R-charges, and an efficient inverse algorithm. J. High Energy Phys. 2008(10), 014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kasteleyn, P.W.: The statistics of dimers on a lattice, I: the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  MATH  Google Scholar 

  24. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, Academic Press, London, pp. 43–110 (1967)

  25. Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab. Stat. 33(5), 591–618 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kenyon, R.: An introduction to the dimer model. In: School and Conference on Probability Theory, ICTP Lecture Notes, vol. XVII, Abdus Salam International Centre for Theoretical Physics, Trieste, pp. 267–304 (2004)

  29. Kenyon, R., Lam, W.Y., Ramassamy, S., Russkikh, M.: Dimers and circle patterns. Annales scientifiques de l’École Normale Supérieure 55(3), 865–903 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kenyon, R., Okounkov, A.: Planar dimers and Harnack curves. Duke Math. J. 131(3), 499–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163(3), 1019–1056 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kenyon, R., Schlenker, J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357(9), 3443–3458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuperberg, G.: An exploration of the permanent-determinant method. Electron. J. Combin. 46, 34 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Lawden, D.F.: Elliptic functions and applications. In: Applied Mathematical Sciences, vol. 80, Springer, New York (1989)

  35. Lanford III, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys., 13, 194–215 (1969)

  36. Mikhalkin, G.: Real algebraic curves, the moment map and amoebas. Ann. Math. Second Ser. 151(1), 309–326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Passare, M.: The trigonometry of Harnack curves. J. Sib. Federal Univ. Math. Phys. 9(3), 347–352 (2016)

    Article  MATH  Google Scholar 

  38. Percus, J.K.: One more technique for the dimer problem. J. Math. Phys. 10, 1881 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  39. Postnikov, A.: Total positivity, Grassmannians, and networks. arXiv e-prints (2006)

  40. Propp, J.: Generalized domino-shuffling. Theoret. Comput. Sci. 303(2–3), 267–301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Russkikh, M.: Dominos in hedgehog domains. Ann. Inst. Henri Poincaré D 8(1), 1–33 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Sheffield, S.: Random Surfaces, vol. 304, Société Mathématique de France (SMF), Paris (2005)

  43. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. Philos. Mag. 6(68), 1061–1063 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Thurston, D.P.: From dominoes to hexagons. In: Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F. R. Jones’ 60th Birthday, Proceedings of the Centre for Mathematics and Its Applications, vol. 46, The Australian National University, Canberra, pp. 399–414 (2017)

  45. Weierstrass, K.: Zur Theorie der Jacobi’schen Functionen von mehreren Veränderlichen. Berl. Ber. 1882, 505–508 (1882)

    MATH  Google Scholar 

  46. Wu, F.Y., Lin, K.-Y.: Staggered ice-rule vertex model: the Pfaffian solution. Phys. Rev. B 12, 419–428 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was started when the second-named author was visiting the first and third-named authors at the LPSM, Sorbonne Université, whose hospitality is thankfully acknowledged. The first- and third-named authors are partially supported by the DIMERS project ANR-18-CE40-0033 funded by the French National Research Agency. The second-named author is partially supported by the Swiss NSF grant 200020-200400. We would like to thank Vladimir Fock for helpful discussions and inspiration, and the anonymous referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Boutillier.

Ethics declarations

Conflict of interest.

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by K. Johansson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutillier, C., Cimasoni, D. & de Tilière, B. Elliptic Dimers on Minimal Graphs and Genus 1 Harnack Curves. Commun. Math. Phys. 400, 1071–1136 (2023). https://doi.org/10.1007/s00220-022-04612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04612-6

Navigation