Skip to main content
Log in

Gradient Flows, Adjoint Orbits, and the Topology of Totally Nonnegative Flag Varieties

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

One can view a partial flag variety in \({\mathbb {C}}^n\) as an adjoint orbit \({\mathcal {O}}_{\lambda }\) inside the Lie algebra of \(n\times n\) skew-Hermitian matrices. We use the orbit context to study the totally nonnegative part of a partial flag variety from an algebraic, geometric, and dynamical perspective. The paper has three main parts: (1) We introduce the totally nonnegative part of \({\mathcal {O}}_{\lambda }\), and describe it explicitly in several cases. We define a twist map on it, which generalizes (in type A) a map of Bloch, Flaschka, and Ratiu (Duke Math. J. 61(1): 41–65, 1990) on an isospectral manifold of Jacobi matrices. (2) We study gradient flows on \({\mathcal {O}}_{\lambda }\) which preserve positivity, working in three natural Riemannian metrics. In the Kähler metric, positivity is preserved in many cases of interest, extending results of Galashin, Karp, and Lam (Adv. Math. 397: Paper No. 108123, 1–23, 2022; Adv. Math. 351: 614–620, 2019). In the normal metric, positivity is essentially never preserved on a generic orbit. In the induced metric, whether positivity is preserved appears to depends on the spacing of the eigenvalues defining the orbit. (3) We present two applications. First, we discuss the topology of totally nonnegative flag varieties and amplituhedra. Galashin, Karp, and Lam (2022, 2019) showed that the former are homeomorphic to closed balls, and we interpret their argument in the orbit framework. We also show that a new family of amplituhedra, which we call twisted Vandermonde amplituhedra, are homeomorphic to closed balls. Second, we discuss the symmetric Toda flow on \({\mathcal {O}}_{\lambda }\). We show that it preserves positivity, and that on the totally nonnegative part, it is a gradient flow in the Kähler metric up to applying the twist map. This extends a result of Bloch, Flaschka, and Ratiu (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  2. Arkani-Hamed, N., Bai, Y., Lam, T.: Positive geometries and canonical forms. J. High Energy Phys., (11):039, front matter+121 (2017)

  3. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences, vol. 75, 2nd edn. Springer, New York (1988)

    MATH  Google Scholar 

  4. Arkani-Hamed, N., Trnka, J.: The amplituhedron. J. High Energy Phys. 10, 33 (2014)

    ADS  MATH  Google Scholar 

  5. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1), 1–15 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Arkani-Hamed, N., Thomas, H., Trnka, J.: Unwinding the amplituhedron in binary. J. High Energy Phys. (1):016, front matter+40, (2018)

  7. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)

    MATH  Google Scholar 

  8. Bloch, A.M., Brockett, R.W., Ratiu, T.S.: Completely integrable gradient flows. Commun. Math. Phys. 147(1), 57–74 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10. Springer, Berlin (1987)

  10. Bloch, A.M., Flaschka, H., Ratiu, T.: A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra. Duke Math. J. 61(1), 41–65 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122(1), 49–149 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Bloch, A.M., Gekhtman, M.I.: Hamiltonian and gradient structures in the Toda flows. J. Geom. Phys. 27(3–4), 230–248 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Blagojević, P.V.M., Galashin, P., Palić, N., Ziegler, G.M.: Some more amplituhedra are contractible. Sel. Math. (N.S.), 25(1):Paper No. 8, 11 (2019)

  14. Bai, Y., He, S., Lam, T.: The amplituhedron and the one-loop Grassmannian measure. J. High Energy Phys. (1):112, front matter+41, (2016)

  15. Bloch, A.M., Karp, S.N.: On two notions of total positivity for partial flag varieties. arXiv:2206.05806

  16. Bloch, A. M.: Steepest descent, linear programming, and Hamiltonian flows. In Mathematical developments arising from linear programming (Brunswick, ME, 1988), volume 114 of Contemp. Math., pages 77–88. Amer. Math. Soc., Providence, RI (1990)

  17. Bloch, A.M., Morrison, P.J., Ratiu, T.S.: Gradient flows in the normal and Kähler metrics and triple bracket generated metriplectic systems. In: Recent Trends in Dynamical Systems, volume 35 of Springer Proc. Math. Stat., pp. 371–415. Springer, Basel (2013)

  18. Brändén, P.: Spaces of Lorentzian and real stable polynomials are Euclidean balls. Forum Math. Sigma, 9:Paper No. e73, 8 (2021)

  19. Brockett, R.W.: Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. Linear Algebra Appl. 146, 79–91 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Chevalier, N.: Total positivity criteria for partial flag varieties. J. Algebra 348, 402–415 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Chernyakov, Y.B., Sharygin, G.I., Sorin, A.S.: Bruhat order in full symmetric Toda system. Commun. Math. Phys. 330(1), 367–399 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Duistermaat, J.J., Kolk, J.A.C., Varadarajan, V.S.: Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Compos. Math. 49(3), 309–398 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Deift, P., Li, L.C., Nanda, T., Tomei, C.: The Toda flow on a generic orbit is integrable. Commun. Pure Appl. Math. 39(2), 183–232 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Deift, P., Lund, F., Trubowitz, E.: Nonlinear wave equations and constrained harmonic motion. Commun. Math. Phys. 74(2), 141–188 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  25. De Mari, F., Pedroni, M.: Toda flows and real Hessenberg manifolds. J. Geom. Anal. 9(4), 607–625 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Deift, P., Nanda, T., Tomei, C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20(1), 1–22 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Durfee, A.H.: Neighborhoods of algebraic sets. Trans. Am. Math. Soc. 276(2), 517–530 (1983)

    MathSciNet  MATH  Google Scholar 

  28. Ercolani, N. M., Flaschka, H., Singer, S.: The geometry of the full Kostant–Toda lattice. In: Integrable Systems (Luminy, 1991), volume 115 of Progr. Math., pp. 181–225. Birkhäuser Boston (1993)

  29. Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2011)

  30. Flaschka, H.: The Toda lattice. II. Existence of integrals. Phys. Rev. B (3) 9, 1924–1925 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Fekete, M., Pólya, G.: Über ein problem von Laguerre. Rend. Circ. Mat. Palermo 34, 89–120 (1912)

    MATH  Google Scholar 

  32. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

  33. Fomin, S., Williams, L., Zelevinsky, A.: Introduction to cluster algebras. Chapters 1–3. arXiv:1608.05735

  34. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12(2), 335–380 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Fomin, S., Zelevinsky, A.: Total positivity: tests and parametrizations. Math. Intell. 22(1), 23–33 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Gantmacher, F.R.: The Theory of Matrices. Vols. 1, 2. Translated by K. A. Hirsch. Chelsea Publishing Co., New York (1959)

  37. Gantmakher, F., Krein, M.: Sur les matrices complètement non négatives et oscillatoires. Compos. Math. 4, 445–476 (1937)

    MATH  Google Scholar 

  38. Gantmaher, F.R., Krein, M.G.: Oscillyacionye matricy i yadra i malye kolebaniya mehaniceskih sistem. Gosudarstv. Isdat. Tehn.-Teor. Lit., Moscow-Leningrad. Translated into English by A. Eremenko. 2d ed. (1950)

  39. Gantmacher, F.P., Krein, M.G.: Oscillation matrices and kernels and small vibrations of mechanical systems. AMS Chelsea Publishing, Providence, RI, revised edition. Translation based on the 1950 Russian original. Edited and with a preface by Alex Eremenko (2002)

  40. Galashin, P., Karp, S.N., Lam, T.: The totally nonnegative part of \(G/P\) is a ball. Adv. Math. 351, 614–620 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Galashin, P., Karp, S.N., Lam, T.: Regularity theorem for totally nonnegative flag varieties. J. Am. Math. Soc. 35(2), 513–579 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Galashin, P, Karp, S.N., Lam, T.: The totally nonnegative Grassmannian is a ball. Adv. Math., 397:Paper No. 108123, 23 (2022)

  43. Galashin, P., Lam, T.: Parity duality for the amplituhedron. Compos. Math. 156(11), 2207–2262 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Gladwell, G.M.L.: Total positivity and Toda flow. Linear Algebra Appl. 350, 279–284 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Guest, M.A., Ohnita, Y.: Group actions and deformations for harmonic maps. J. Math. Soc. Jpn 45(4), 671–704 (1993)

    MathSciNet  MATH  Google Scholar 

  46. Gasca, M., Peña, J.M.: Total positivity, \(QR\) factorization, and Neville elimination. SIAM J. Matrix Anal. Appl. 14(4), 1132–1140 (1993)

    MathSciNet  MATH  Google Scholar 

  47. Gekhtman, M.I., Shapiro, M.Z.: Completeness of real Toda flows and totally positive matrices. Math. Z. 226(1), 51–66 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 4th edn. (2013)

  49. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd edn. Elsevier/Academic Press, Amsterdam (2013)

  50. Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford, California (1968)

    MATH  Google Scholar 

  51. Karp, S.N.: Sign variation, the Grassmannian, and total positivity. J. Combin. Theory Ser. A 145, 308–339 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Karp, S.N.: Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc. 51(5), 900–916 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Karp, S.N., Machacek, J.: Shelling the \(m=1\) amplituhedron. arXiv:2104.02786

  54. Knapp, A.W.: Lie Groups Beyond an Introduction,. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser Boston, Inc., Boston (2002)

    MATH  Google Scholar 

  55. Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34(3), 195–338 (1979)

    MathSciNet  MATH  Google Scholar 

  56. Kodama, Y., Shipman, B.A.: Fifty years of the finite nonperiodic Toda lattice: a geometric and topological viewpoint. J. Phys. A 51(35), 353001, 39 (2018)

  57. Kushel, O.Y.: Matrices with totally positive powers and their generalizations. Oper. Matrices 9(4), 943–964 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Kodama, Y., Williams, L.: The full Kostant–Toda hierarchy on the positive flag variety. Comm. Math. Phys. 335(1), 247–283 (2015)

  59. Karp, S.N., Williams, L.K.: The \(m=1\) amplituhedron and cyclic hyperplane arrangements. Int. Math. Res. Not. IMRN 5, 1401–1462 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Lam, T.: Totally nonnegative Grassmannian and Grassmann polytopes. In: Current Developments in Mathematics 2014. International Press, Somerville, MA, pp. 51–152 (2016)

  61. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    MathSciNet  MATH  Google Scholar 

  62. Loewner, C.: On totally positive matrices. Math. Z. 63, 338–340 (1955)

    MathSciNet  MATH  Google Scholar 

  63. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry, volume 123 of Progr. Math.. Birkhäuser Boston, Boston, MA, pp. 531–568 (1994)

  64. Lusztig, G.: Total positivity in partial flag manifolds. Represent. Theory 2, 70–78 (1998)

    MathSciNet  MATH  Google Scholar 

  65. Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differ. Geom. 31(2), 501–526 (1990)

    MathSciNet  MATH  Google Scholar 

  66. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential–an integrable system. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 467–497. Lecture Notes in Phys., Vol. 38 (1975)

  67. Martínez Torres, D., Tomei, C.: An atlas adapted to the Toda flow. arXiv:1909.02676

  68. Parlett, B.N.: The symmetric eigenvalue problem, volume 20 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Corrected reprint of the 1980 original (1998)

  69. Perron, O.: Zur Theorie der Matrices. Math. Ann. 64(2), 248–263 (1907)

  70. Pinkus, A.: Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  71. Postnikov, A.: Total positivity, Grassmannians, and networks. https://math.mit.edu/~apost/papers/tpgrass.pdf (2007)

  72. Rietsch, K.: The infinitesimal cone of a totally positive semigroup. Proc. Am. Math. Soc. 125(9), 2565–2570 (1997)

    MathSciNet  MATH  Google Scholar 

  73. Rietsch, K.C.: Total Positivity and Real Flag Varieties. Ph.D. Thesis, Massachusetts Institute of Technology (1998)

  74. Rietsch, K.: An algebraic cell decomposition of the nonnegative part of a flag variety. J. Algebra 213(1), 144–154 (1999)

    MathSciNet  MATH  Google Scholar 

  75. Rietsch, K., Williams, L.: Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians. Duke Math. J. 168(18), 3437–3527 (2019)

    MathSciNet  MATH  Google Scholar 

  76. Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. S.-B. Berlin. Math. Ges. 22, 9–20 (1923)

    MATH  Google Scholar 

  77. Singer, S. F.: The geometry of the full Toda lattice. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–New York University (1991)

  78. Semenov-Tian-Shansky, M.A.: Dressing transformations and Poisson group actions. Publ. Res. Inst. Math. Sci. 21(6), 1237–1260 (1985)

    MathSciNet  MATH  Google Scholar 

  79. Sturmfels, B.: Totally positive matrices and cyclic polytopes. In: Proceedings of the Victoria Conference on Combinatorial Matrix Analysis (Victoria, BC, 1987), vol. 107, pp. 275–281 (1988)

  80. Symes, W.W.: Hamiltonian group actions and integrable systems. Phys. D 1(4), 339–374 (1980)

    MathSciNet  MATH  Google Scholar 

  81. Symes, W.W.: The \(QR\) algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4(2), 275–280 (1981/82)

  82. Toda, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23(3), 501–506 (1967)

    ADS  MathSciNet  Google Scholar 

  83. Tomei, C.: The topology of isospectral manifolds of tridiagonal matrices. Duke Math. J. 51(4), 981–996 (1984)

    MathSciNet  MATH  Google Scholar 

  84. Williams, L.K.: Shelling totally nonnegative flag varieties. J. Reine Angew. Math. 609, 1–21 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Roger Brockett, Sergey Fomin, Pavel Galashin, Thomas Lam, and Tudor Raţiu for valuable discussions, and Jonathan Boretsky for helpful feedback on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Karp.

Additional information

Communicated by H-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A.M.B. was partially supported by NSF grants DMS-1613819 and DMS-2103026, and AFOSR grant FA 9550-22-1-0215. S.N.K. was partially supported by an NSERC postdoctoral fellowship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, A.M., Karp, S.N. Gradient Flows, Adjoint Orbits, and the Topology of Totally Nonnegative Flag Varieties. Commun. Math. Phys. 398, 1213–1289 (2023). https://doi.org/10.1007/s00220-022-04540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04540-5

Navigation