Skip to main content
Log in

The Gibbons–Hawking Ansatz in Generalized Kähler Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a local ansatz for generalized Kähler surfaces with nondegenerate Poisson structure and a biholomorphic \(S^1\) action which generalizes the classic Gibbons–Hawking ansatz for invariant hyperKähler manifolds, and allows for the choice of one arbitrary function. By imposing the generalized Kähler–Ricci soliton equation, or equivalently the equations of type IIB string theory, the construction becomes rigid, and we classify all complete solutions with the smallest possible symmetry group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adem, A., Leida, J., Ruan, Y.: Orbifolds and stringy topology, volume 171 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2007)

  2. Anderson, M., Kronheimer, P., LeBrun, C.: Complete Ricci-flat Kähler manifolds of infinite topological type. Commun. Math. Phys. 125(4), 637–642 (1989)

    Article  ADS  Google Scholar 

  3. Apostolov, V., Gauduchon, P., Grantcharov, G.: Bi-Hermitian structures on complex surfaces. Proc. Lond. Math. Soc. (3) 79(2), 414–428 (1999)

    Article  MathSciNet  Google Scholar 

  4. Apostolov, V., Gualtieri, M.: Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Commun. Math. Phys. 271(2), 561–575 (2007)

    Article  ADS  Google Scholar 

  5. Apostolov, V., Streets, J.: The nondegenerate generalized Kähler Calabi–Yau problem. J. Reine Angew. Math. 777, 1–48 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bielawski, R.: Complete hyper-Kähler \(4n\)-manifolds with a local tri-Hamiltonian \({\mathbf{R}}^n\)-action. Math. Ann. 314(3), 505–528 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bismut, J.-M.: A local index theorem for non-Kähler manifolds. Math. Ann. 284(4), 681–699 (1989)

    Article  MathSciNet  Google Scholar 

  8. Boyer, C.P.: Conformal duality and compact complex surfaces. Math. Ann. 274(3), 517–526 (1986)

    Article  MathSciNet  Google Scholar 

  9. Callan, C., Friedan, D., Martinec, E., Perry, M.: Strings in background fields. Nucl. Phys. B 262(4), 593–609 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cavalcanti, G., Gualtieri, M.: Generalized complex geometry and \(T\)-duality. In: A celebration of the mathematical legacy of Raoul Bott, volume 50 of CRM Proc. Lecture Notes, pages 341–365. American Mathematical Society, Providence, RI (2010)

  11. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  Google Scholar 

  12. do Carmo, M.: Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition. Dover Books on Mathematics. Dover Publications (2016)

  13. Garcia-Fernandez, M., Streets, J.: Generalized Ricci Flow. University Lecture Series. American Mathematical Society (2021)

  14. Gates, S., Jr., Hull, C., Roček, M.: Twisted multiplets and new supersymmetric nonlinear -models. Nucl. Phys. B 248(1), 157–186 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gauduchon, P., Ivanov, S.: Einstein–Hermitian surfaces and Hermitian Einstein–Weyl structures in dimension \(4\). Math. Z. 226(2), 317–326 (1997)

    Article  MathSciNet  Google Scholar 

  16. Gauduchon, P.: Structures de Weyl–Einstein, espaces de twisteurs et variétés de type \(S^1\times S^3\). J. Reine Angew. Math. 469, 1–50 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Gibbons, G., Hawking, S.: Gravitational multi-instantons. Phys. Lett. B 78(4), 430–432 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gilkey, P., Park, J., Tuschmann, W.: Invariant metrics of positive Ricci curvature on principal bundles. Math. Z. 227(3), 455–463 (1998)

    Article  MathSciNet  Google Scholar 

  19. Grigoryan, A.: The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds. Mat. Sb. (N.S.), 128(170)(3):354–363, 446 (1985)

  20. Gualtieri, M.: Branes on Poisson varieties. In: The many facets of geometry, pp. 368–394. Oxford University Press, Oxford (2010)

  21. Gualtieri, M.: Generalized Kähler geometry. Commun. Math. Phys. 331(1), 297–331 (2014)

    Article  ADS  Google Scholar 

  22. Guillemin, V., Ginzburg, V., Karshon, Y.: Moment maps, cobordisms, and Hamiltonian group actions, volume 98 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman

  23. Hitchin, N.: Instantons, Poisson structures and generalized Kähler geometry. Commun. Math. Phys. 265(1), 131–164 (2006)

    Article  ADS  Google Scholar 

  24. Hitchin, N.: Lectures on generalized geometry. In: Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, volume 16 of Surv. Differ. Geom., pages 79–124. Int. Press, Somerville, MA (2011)

  25. John, F.: The fundamental solution of linear elliptic differential equations with analytic coefficients. Commun. Pure Appl. Math. 3, 273–304 (1950)

    Article  MathSciNet  Google Scholar 

  26. Kollár, J.: Circle actions on simply connected 5-manifolds. Topology 45(3), 643–671 (2006)

    Article  MathSciNet  Google Scholar 

  27. Koszul, J.: Sur certains groupes de transformations de Lie. In: Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, pages 137–141. Centre National de la Recherche Scientifique, Paris (1953)

  28. LeBrun, C.: Anti-self-dual Hermitian metrics on blown-up Hopf surfaces. Math. Ann. 289(3), 383–392 (1991)

    Article  MathSciNet  Google Scholar 

  29. Pontecorvo, M.: Complex structures on Riemannian four-manifolds. Math. Ann. 309(1), 159–177 (1997)

    Article  MathSciNet  Google Scholar 

  30. Schoen, R., Yau, S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92(1), 47–71 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. Streets, J.: Generalized Kähler–Ricci flow and the classification of nondegenerate generalized Kähler surfaces. Adv. Math. 316, 187–215 (2017)

    Article  MathSciNet  Google Scholar 

  32. Streets, J.: Classification of solitons for pluriclosed flow on complex surfaces. Math. Ann. 375(3–4), 1555–1595 (2019)

    Article  MathSciNet  Google Scholar 

  33. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 16, 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Streets, J., Tian, G.: Generalized Kähler geometry and the pluriclosed flow. Nucl. Phys. B 858(2), 366–376 (2012)

    Article  ADS  Google Scholar 

  35. Streets, J., Tian, G.: Regularity results for pluriclosed flow. Geom. Topol. 17(4), 2389–2429 (2013)

    Article  MathSciNet  Google Scholar 

  36. Streets, J., Ustinovskiy, Y.: Classification of generalized Kähler–Ricci solitons on complex surfaces. Commun. Pure Appl. Math. 74(9), 1896–1914 (2021)

    Article  Google Scholar 

  37. Yau, S.T.: Remarks on the group of isometries of a Riemannian manifold. Topology 16(3), 239–247 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees for useful remarks and suggestions. We would also like to thank Vestislav Apostolov and Connor Mooney for helpful discussions.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streets, J., Ustinovskiy, Y. The Gibbons–Hawking Ansatz in Generalized Kähler Geometry. Commun. Math. Phys. 391, 707–778 (2022). https://doi.org/10.1007/s00220-022-04329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04329-6

Navigation