Skip to main content

Formation of Unstable Shocks for 2D Isentropic Compressible Euler

Abstract

In this paper we construct unstable shocks in the context of 2D isentropic compressible Euler in azimuthal symmetry. More specifically, we construct initial data that when viewed in self-similar coordinates, converges asymptotically to the unstable \(C^{\frac{1}{5}}\) self-similar solution to the Burgers’ equation. Moreover, we show the behavior is stable in \(C^8\) modulo a two dimensional linear subspace. Under the azimuthal symmetry assumption, one cannot impose additional symmetry assumptions in order to isolate the corresponding manifold of initial data leading to stability: rather, we rely on modulation variable techniques in conjunction with a Newton scheme.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Buckmaster, T., Shkoller, S., Vicol, V.: Formation of point shocks for 3D compressible Euler (2019). arXiv:1912.04429

  2. Buckmaster, T., Shkoller, S., Vicol, V.: Formation of shocks for 2D isentropic compressible Euler (2019). arXiv:1907.03784

  3. Buckmaster, T., Shkoller, S., Vicol, V.: Shock formation and vorticity creation for 3D Euler (2020). arXiv:2006.14789

  4. Christodoulou, D.: The formation of shocks in 3-dimensional fluids. In: EMS Monographs in Mathematics. European Mathematical Society (EMS), ZĂĽrich (2007)

  5. Christodoulou, D., Miao, S.: Compressible flow and Eulers equations. In: Surveys of Modern Mathematics, vol. 9. International Press, Somerville (2014)

  6. Collot, C., Ghoul, T.-E., Ibrahim, S., Masmoudi, N.: On singularity formation for the two dimensional unsteady Prandtls system (2018). arXiv:1808.05967

  7. Collot, C., Ghoul, T.-E., Masmoudi, N.: Singularity formation for Burgers equation with transverse viscosity (2018). arXiv:1803.07826

  8. Collot, C., Ghoul, T.-E., Masmoudi, N.: Unsteady separation for the inviscid two-dimensional prandtls system (2019). arXiv:1903.08244

  9. Dafermos, C.M., Hyperbolic conservation laws in continuum physics. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Third, vol. 325. Springer, Berlin (2010)

  10. Eggers, J., Fontelos, M.A.: Singularities: formation, structure, and propagation. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2015)

  11. John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math. 27, 377–405 (1974)

    Article  MathSciNet  Google Scholar 

  12. Lax, P.D.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611–613 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, T.P.: Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Differ. Equ. 33(1), 92–111 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  14. Luk, J., Speck, J.: Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity. Invent. Math. 214(1), 1–169 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences, vol. 53. Springer, New York (1984)

  16. Merle, F.: Asymptotics for \(L^2\) minimal blow-up solutions of critical nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(5), 553–565 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1), 157–222 (2005)

    Article  MathSciNet  Google Scholar 

  18. Merle, F., Zaag, H.: Stability of the blow-up profile for equations of the type \(u_t=\Delta u+|u|^{p-1}u\). Duke Math. J. 86(1), 143–195 (1997)

    Article  MathSciNet  Google Scholar 

  19. Merle, F., Raphael, P., Rodnianski, I., Szeftel, J.: On smooth self similar solutions to the compressible Euler equations (2019). arXiv:1912.10998

  20. Merle, F., Raphael, P., Rodnianski, I., Szeftel, J.: On the implosion of a three dimensional compressible fluid (2019). arXiv:1912.11009

  21. Merle, F., Raphaël, P., Szeftel, J.: The instability of Bourgain–Wang solutions for the \(L^2\) critical NLS. Am. J. Math. 135(4), 967–1017 (2013)

    Article  Google Scholar 

  22. Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 8, 43–66 (1860)

    Google Scholar 

  23. Sideris, T.C.: Delayed singularity formation in \(2\)D compressible flow. Am. J. Math. 119(2), 371–422 (1997)

    Article  MathSciNet  Google Scholar 

  24. Yang, R.: Shock formation for the Burgers–Hilbert equation (2020). arXiv:2006.05568

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Iyer.

Additional information

Communicated by K. Nakanishi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tristan Buckmaster partially supported by NSF Grant DMS-1900149 and a Simons Foundation Mathematical and Physical Sciences Collaborative Grant. Sameer Iyer partially supported by NSF Grant DMS-1802940.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckmaster, T., Iyer, S. Formation of Unstable Shocks for 2D Isentropic Compressible Euler. Commun. Math. Phys. 389, 197–271 (2022). https://doi.org/10.1007/s00220-021-04271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04271-z