Skip to main content
Log in

Delocalization of Uniform Graph Homomorphisms from \({\mathbb {Z}}^2\) to \({\mathbb {Z}}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Graph homomorphisms from the \({\mathbb {Z}}^d\) lattice to \({\mathbb {Z}}\) are functions on \({\mathbb {Z}}^d\) whose gradients equal one in absolute value. These functions are the height functions corresponding to proper 3-colorings of \({\mathbb {Z}}^d\) and, in two dimensions, corresponding to the 6-vertex model (square ice). We consider the uniform model, obtained by sampling uniformly such a graph homomorphism subject to boundary conditions. Our main result is that the model delocalizes in two dimensions, having no translation-invariant Gibbs measures. Additional results are obtained in higher dimensions and include the fact that every Gibbs measure which is ergodic under even translations is extremal and that these Gibbs measures are stochastically ordered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Functions in \(({\mathbb {Z}}^2)^{{\mathbb {Z}}^d}\) are written as \((f,g):{\mathbb {Z}}^d\rightarrow {\mathbb {Z}}^2\), where f(v) is the first value at v and g(v) is the second value at v.

References

  1. Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun. Math. Phys. 111(4), 505–531 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Courier Corporation, North Chelmsford (2007)

    MATH  Google Scholar 

  3. Benjamini, I., Häggström, O., Mossel, E.: On random graph homomorphisms into Z. J. Comb. Theory Ser. B 78(1), 86–114 (2000)

    Article  MathSciNet  Google Scholar 

  4. Benjamini, I., Yadin, A., Yehudayoff, A.: Random graph-homomorphisms and logarithmic degree. Electron. J. Probab. 12, 926–950 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Berestycki, N., Laslier, B., Ray, G.: Universality of fluctutations in the dimer model. arXiv preprint. arXiv:1603.09740 (2016)

  6. Burton, R., Steif, J.E.: Non-uniqueness of measures of maximal entropy for subshifts of finite type. Ergodic Theory Dyn. Syst. 14(2), 213–236 (1994)

    Article  MathSciNet  Google Scholar 

  7. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121(3), 501–505 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chandgotia, N., Meyerovitch, T.: Markov random fields, Markov cocycles and the 3-colored chessboard. Israel J. Math. 215(2), 909–964 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chandgotia, N., Pak, I., Tassy, M.: Kirszbraun-type theorems for graphs. arXiv preprint. arXiv:1710.11007 (2017)

  10. Cohen-Alloro, O., Peled, R.: Rarity of extremal edges in random surfaces and other theoretical applications of cluster algorithms. arXiv preprint arXiv:1711.00259 (2017)

  11. Downarowicz, T.: Entropy in Dynamical Systems, vol. 18. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  12. Dubédat, J.: Exact Bosonization of the Ising model. arXiv preprint arXiv:1112.4399 (2011)

  13. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: Discontinuity of the phase transition for the planar random-cluster and Potts models with \( q> 4\). arXiv preprint arXiv:1611.09877 (2016)

  14. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: The Bethe ansatz for the six-vertex and xxz models: an exposition. Probab. Surv. 15, 102–130 (2018)

    Article  MathSciNet  Google Scholar 

  15. Duminil-Copin, H., Glazman, A., Peled, R., Spinka, Y.: Macroscopic loops in the loop \( {O} (n) \) model at Nienhuis’ critical point. arXiv preprint arXiv:1707.09335 (2017)

  16. Duminil-Copin, H., Harel, M., Laslier, B., Raoufi, A., Ray, G.: Logarithmic variance for the height function of square-ice. arXiv preprint arXiv:1911.00092 (2019)

  17. Duminil-Copin, H., Karrila, A., Manolescu, I., Oulamara, M.: Delocalization of the height function of the six-vertex model. arXiv:2012.13750 [math-ph], Dec. 2020. arXiv:2012.13750

  18. Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharp phase transition for the random-cluster and Potts models via decision trees. arXiv:1705.03104

  19. Duminil-Copin, H., Sidoravicius, V., Tassion, V.: Continuity of the phase transition for planar random-cluster and Potts models with \(1 \le q \le 4\). Commun. Math. Phys. 349(1), 47–107 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89–103 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fröhlich, J., Spencer, T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. Galvin, D.: On homomorphisms from the Hamming cube to Z. Israel J. Math. 138(1), 189–213 (2003)

    Article  MathSciNet  Google Scholar 

  23. Galvin, D., Kahn, J., Randall, D., Sorkin, G.B.: Phase coexistence and torpid mixing in the 3-coloring model on \({\mathbb{Z}}^d\). SIAM J. Discrete Math. 29(3), 1223–1244 (2015)

    Article  MathSciNet  Google Scholar 

  24. Georgii, H.-O.: Gibbs measures and phase transitions, volume 9 of De Gruyter Studies in Mathematics, 2nd edn. Walter de Gruyter & Co., Berlin (2011)

  25. Giuliani, A., Mastropietro, V., Toninelli, F.L.: Haldane relation for interacting dimers. J. Stat. Mech. Theory Exp. (3), 034002, 47 (2017)

  26. Glazman, A., Manolescu, I.: Uniform Lipschitz functions on the triangular lattice have logarithmic variations. arXiv preprint arXiv:1810.05592 (2018)

  27. Glazman, A., Peled, R.: On the transition between the disordered and antiferroelectric phases of the 6-vertex model. arXiv preprint arXiv:1909.03436 (2019)

  28. Goldberg, L.A., Martin, R., Paterson, M.: Random sampling of 3-colorings in \({\mathbb{Z}}^{2\ast }\). Random Struct. Algorithms 24(3), 279–302 (2004)

    Article  Google Scholar 

  29. Häggström, O.: A note on disagreement percolation. Random Struct. Algorithms 18(3), 267–278 (2001)

    Article  MathSciNet  Google Scholar 

  30. Häggström, O., Jonasson, J.: Uniqueness and non-uniqueness in percolation theory. Probab. Surv. 3, 289–344 (2006)

    Article  MathSciNet  Google Scholar 

  31. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kahn, J.: Range of cube-indexed random walk. Israel J. Math. 124, 189–201 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. Keller, G.: Equilibrium States in Ergodic Theory, vol. 42. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  34. Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)

    Article  MathSciNet  Google Scholar 

  35. Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kenyon, R.: Height fluctuations in the honeycomb dimer model. Commun. Math. Phys. 281(3), 675–709 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kharash, V., Peled, R.: The Fröhlich-Spencer proof of the Berezinskii–Kosterlitz–Thouless transition. arXiv preprint arXiv:1711.04720 (2017)

  38. Lammers, P.: Height function delocalisation on cubic planar graphs. arXiv:2012.09687 [math-ph], Dec. 2020. arXiv: 2012.09687

  39. Lammers, P., Ott, S.: Delocalisation and absolute-value-fkg in the solid-on-solid model. arXiv preprint arXiv:2101.05139 (2021)

  40. Lammers, P., Tassy, M.: Macroscopic behavior of Lipschitz random surfaces. arxiv:2004.15025 (2020)

  41. Lanford, O., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13(3), 194–215 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  42. Lieb, E., Wu, F.: Two-dimensional ferroelectric models in phase transitions and critical phenomena 1, ed. C. Domb and MS Green. https://web.math.princeton.edu/~lieb/Lieb-Wu-Ice.pdf (1972)

  43. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162, 162–172 (1967)

    Article  ADS  Google Scholar 

  44. Lis, M.: On delocalization in the six-vertex model. arXiv preprint arXiv:2004.05337 (2020)

  45. Luby, M., Randall, D., Sinclair, A.: Markov chain algorithms for planar lattice structures. SIAM J. Comput. 31(1), 167–192 (2001)

    Article  MathSciNet  Google Scholar 

  46. Menz, G., Martin, T.: A variational principle for a non-integrable model. arXiv:1610.08103

  47. Peled, R.: High-dimensional Lipschitz functions are typically flat. Ann. Probab. 45(3), 1351–1447 (2017)

    Article  MathSciNet  Google Scholar 

  48. Peled, R., Samotij, W., Yehudayoff, A.: Lipschitz functions on expanders are typically flat. Comb. Probab. Comput. 22(4), 566–591 (2013)

    Article  MathSciNet  Google Scholar 

  49. Peled, R., Spinka, Y.: Rigidity of proper colorings of \({\mathbb{Z}}^d\). arXiv preprint arXiv:1808.03597 (2018)

  50. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1–2), 223–252 (1996)

    Article  MathSciNet  Google Scholar 

  51. Russkikh, M.: Dimers in piecewise Temperleyan domains. Commun. Math. Phys. 359(1), 189–222 (2018)

    Article  MathSciNet  Google Scholar 

  52. Russkikh, M.: Dominos in hedgehog domains. arXiv preprint arXiv:1803.10012 (2018)

  53. Sarig, O.: Existence of Gibbs measures for countable Markov shifts. Proc. Am. Math. Soc. 131(6), 1751–1758 (2003)

    Article  MathSciNet  Google Scholar 

  54. Sheffield, S.: Random surfaces. Astérisque (304), vi+175 (2005)

  55. van Beijeren, H.: Exactly solvable model for the roughening transition of a crystal surface. Phys. Rev. Lett. 38(18), 993 (1977)

    Article  ADS  Google Scholar 

  56. van den Berg, J.: A uniqueness condition for Gibbs measures, with application to the 2-dimensional Ising antiferromagnet. Commun. Math. Phys. 152(1), 161–166 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  57. van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab. 749–763 (1994)

  58. Velenik, Y.: Localization and delocalization of random interfaces. Probab. Surv. 3, 112–169 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of NC was supported in part by the European Research Council starting grant 678520 (LocalOrder) and ISF Grant Nos. 1289/17, 1702/17, 1570/17, 2095/15 and 2919/19 and was carried out when he was a postdoctoral fellow at Tel Aviv University and the Hebrew Univeristy of Jerusalem. The work of RP was supported in part by Israel Science Foundation Grant 861/15 and the European Research Council starting Grant 678520 (LocalOrder). The work of SS was supported in part by NSF Grants DMS 1209044 and DMS 1712862. We thank Alexander Glazman and Yinon Spinka for reading our draft and suggesting various improvements. Steven M. Heilman helped prepare Fig. 1. We thank the anonymous referee for multiple suggestions for improving the clarity of the arguments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Peled.

Additional information

Communicated by H. D.-Copin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandgotia, N., Peled, R., Sheffield, S. et al. Delocalization of Uniform Graph Homomorphisms from \({\mathbb {Z}}^2\) to \({\mathbb {Z}}\). Commun. Math. Phys. 387, 621–647 (2021). https://doi.org/10.1007/s00220-021-04181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04181-0

Navigation