Skip to main content
Log in

Convergence of Spectral Triples on Fuzzy Tori to Spectral Triples on Quantum Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Fuzzy tori are finite dimensional C*-algebras endowed with an appropriate notion of noncommutative geometry inherited from an ergodic action of a finite closed subgroup of the torus, which are meant as finite dimensional approximations of tori and more generally, quantum tori. A mean to specify the geometry of a noncommutative space is by constructing over it a spectral triple. We prove in this paper that we can construct spectral triples on fuzzy tori which, as the dimension grows to infinity and under other natural conditions, converge to a natural spectral triple on quantum tori, in the sense of the spectral propinquity. This provides a formal assertion that indeed, fuzzy tori approximate quantum tori, not only as quantum metric spaces, but as noncommutative differentiable manifolds—including convergence of the state spaces as metric spaces and of the quantum dynamics generated by the Dirac operators of the spectral triples, in an appropriate sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aguilar, K., Kaad, J.: The Podleś sphere as a spectral metric space. J. Geom. Phys. 133, 260–278 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Aguilar, K., Latrémolière, F.: Quantum ultrametrics on AF algebras and the Gromov–Hausdorff propinquity. Studia Math. 231(2), 149–194 (2015). arXiv:1511.07114

    MathSciNet  MATH  Google Scholar 

  3. Barrett, J.: Matrix geometries and fuzzy spaces as finite spectral triples. J. Math. Phys. 56(8), 082301 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bhowmick, J., Voigt, C., Zacharias, J.: Compact quantum metric spaces from quantum groups of rapid decay. Submitted (2014). arXiv:1406.0771

  5. Bratteli, O.: Inductive limits of finite dimensional \(C^\ast \)-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Christ, M., Rieffel, M.A.: Nilpotent group \(C^\ast \)-algebras-algebras as compact quantum metric spaces. Can. Math. Bull. 60(1), 77–94 (2017). arXiv:1508.00980

    MathSciNet  MATH  Google Scholar 

  7. Christensen, E., Ivan, C., Lapidus, M.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217(1), 42–78 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Connes, A.: C*-algébres et géométrie differentielle. C. R. de l’Academie des Sciences de Paris (Series A-B), 290 (1980)

  9. Connes, A.: Compact metric spaces, Fredholm modules and hyperfiniteness. Ergodic Theory Dyn. Syst. 9(2), 207–220 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  11. Connes, A., Douglas, M., Schwarz, A.: Noncommutative geometry and matrix theory: compactification on tori. JHEP (1998). arXiv:Hep-th/9711162

  12. Dąbrowski, L., Sitarz, A.: Curved noncommutative torus and Gauß–Bonnet. J. Math. Phys. 54, 013518 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Dąbrowski, L., Sitarz, A.: An asymmetric noncommutative torus. SIGMA 11, 11 (2015). arXiv:1406.4645

    MathSciNet  MATH  Google Scholar 

  14. Davidson, K.R.: C*-Algebras by Example. Fields Institute Monographs. American Mathematical Society, Providence (1996)

    Google Scholar 

  15. Dobrushin, R.L.: Prescribing a system of random variables by conditional probabilities. Theory Probab. Appl. 15(3), 459–486 (1970)

    Google Scholar 

  16. Edwards, D.A.: The structure of superspace. In: Studies in Topology (Proceedings Conference, University of North Carolina, Charlotte, NC, 1974; dedicated to Math. Sect. Polish Acad. Sci.), pp. 121–133 (1975)

  17. Gabriel, O., Grensing, M.: Ergodic actions and spectral triples. J. Oper. Theory 76(2), 307–334 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc. 95, 318–340 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. Inst. Hautes Études Sci. 53, 53–78 (1981)

    MathSciNet  MATH  Google Scholar 

  20. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics. Birkhäuser, Basel (1999)

    MATH  Google Scholar 

  21. Hausdorff, F.: Grundzüge der Mengenlehre. Verlag Von Veit und Comp. (1914)

  22. Hawkins, A., Skalski, A., White, S., Zacharias, J.: On spectral triples on crossed products arising from equicontinuous actions. Math. Scand. 113, 262–291 (2013). arXiv:1103.6199

    MathSciNet  MATH  Google Scholar 

  23. Kantorovich, L.V.: On one effective method of solving certain classes of extremal problems. Dokl. Akad. Nauk. USSR 28, 212–215 (1940)

    Google Scholar 

  24. Kantorovich, L.V., Rubinstein, G.S.: On the space of completely additive functions. Vestnik Leningrad Univ. Ser. Mat. Mekh. i Astron. 13(7), 52–59 (1958). (in Russian)

    MathSciNet  MATH  Google Scholar 

  25. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  26. Kimura, Y.: Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model. Nuclear Phys. B 604(1–2), 121–147 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Kleppner, A.: Multipliers on Abelian groups. Math. Ann. 158, 11–34 (1965)

    MathSciNet  MATH  Google Scholar 

  28. Kleppner, A.: Continuity and measurability of multiplier and projective representations. J. Funct. Anal. 17, 214–226 (1974)

    MathSciNet  MATH  Google Scholar 

  29. Landry, T., Lapidus, M., Latrémoliére, F.: Metric approximations of the spectral triple on the sierpinky gasket and other fractals. Adv. Math 385, 43 (2021). https://doi.org/10.1016/j.aim.2021.107771

    Article  MATH  Google Scholar 

  30. Latrémoliére, F.: Approximation of the quantum tori by finite quantum tori for the quantum Gromov–Hausdorff distance. J. Funct. Anal. 223, 365–395 (2005). arXiv:math/0310214

    MathSciNet  MATH  Google Scholar 

  31. Latrémoliére, F.: Bounded-Lipschitz distances on the state space of a C*-algebra. Taiwan. J. Math. 11(2), 447–469 (2007). arXiv:math/0510340

    MathSciNet  MATH  Google Scholar 

  32. Latrémoliére, F.: Quantum locally compact metric spaces. J. Funct. Anal. 264(1), 362–402 (2013). arXiv:1208.2398

    MathSciNet  MATH  Google Scholar 

  33. Latrémoliére, F.: Convergence of fuzzy tori and quantum tori for the quantum Gromov–Hausdorff propinquity: an explicit approach. Münster J. Math. 8(1), 57–98 (2015). arXiv:1312.0069

    MathSciNet  MATH  Google Scholar 

  34. Latrémoliére, F.: Curved noncommutative tori as Leibniz compact quantum metric spaces. J. Math. Phys. 56(12), 123503 (2015). arXiv:1507.08771

    ADS  MathSciNet  MATH  Google Scholar 

  35. Latrémoliére, F.: The dual Gromov–Hausdorff propinquity. J. Math. Pures Appl. 103(2), 303–351 (2015). arXiv:1311.0104

    MathSciNet  MATH  Google Scholar 

  36. Latrémoliére, F.: Equivalence of quantum metrics with a common domain. J. Math. Anal. Appl. 443, 1179–1195 (2016). arXiv:1604.00755

    MathSciNet  MATH  Google Scholar 

  37. Latrémolière, F.: The quantum Gromov–Hausdorff propinquity. Trans. Am. Math. Soc. 368(1), 365–411 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Latrémoliére, F.: A compactness theorem for the dual Gromov–Hausdorff propinquity. Indiana Univ. Math. J. 66(5), 1707–1753 (2017). arXiv:1501.06121

    MathSciNet  MATH  Google Scholar 

  39. Latrémoliére, F.: The triangle inequality and the dual Gromov–Hausdorff propinquity. Indiana Univ. Math. J. 66(1), 297–313 (2017). arXiv:1404.6633

    MathSciNet  MATH  Google Scholar 

  40. Latrémoliére, F.: The dual-modular Gromov–Hausdorff propinquity and completeness. J. Noncomm. Geom 15(1), 347–398 (2021). https://doi.org/10.4171/jncg/414

    Article  MathSciNet  MATH  Google Scholar 

  41. Latrémoliére, F.: The Gromov–Hausdorff propinquity for metric spectral triples. Submitted arXiv:1811.10843 (2018)

  42. Latrémoliére, F.: Actions of categories by Lipschitz morphisms on limits for the Gromov–Hausdorff propinquity. J. Geom. Phys. 146, 103481 (2019). arXiv:1708.01973

    MathSciNet  MATH  Google Scholar 

  43. Latrémoliére, F.: Convergence of Cauchy sequences for the covariant Gromov–Hausdorff propinquity. J. Math. Anal. Appl. 469(1), 378–404 (2019). arXiv:1806.04721

    MathSciNet  MATH  Google Scholar 

  44. Latrémoliére, F.: The modular Gromov–Hausdorff propinquity. Diss. Math. 544, 1–70 (2019). arXiv:1608.04881

    MathSciNet  MATH  Google Scholar 

  45. Latrémoliére, F.: Convergence of Heisenberg modules for the modular Gromov–Hausdorff propinquity. J. Oper. Theory 84(1), 211–237 (2020)

    MathSciNet  Google Scholar 

  46. Latrémoliére, F.: The covariant Gromov–Hausdorff propinquity. Studia Math. 251(2), 135–169 (2020). arXiv:1805.11229

    MathSciNet  MATH  Google Scholar 

  47. Latrémoliére, F.: Heisenberg modules over quantum \(2\)-tori are metrized quantum vector bundles. Can. J. Math 72(4), 1044–1081 (2020). arXiv:1703.07073

    MathSciNet  MATH  Google Scholar 

  48. Latrémoliére, F., Packer, J.: Noncommutative solenoids and the Gromov–Hausdorff propinquity. Proc. Am. Math. Soc. 145(5), 1179–1195 (2017). arXiv:1601.02707

    MathSciNet  MATH  Google Scholar 

  49. Li, H.: Compact quantum metric space and ergodic actions of compact quantum groups. J. Funct. Anal. 256(10), 3368–3408 (2009). https://doi.org/10.1016/j.jfa.2008.09.009

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, H.: Metric aspects of noncommutative homogenous space. J. Funct. Anal. 257(7), 2325–2350 (2009). arXiv:0810.4694

    MathSciNet  MATH  Google Scholar 

  51. Mackey, G.W.: Unitary representations of group extensions, i. Acta Math. 99, 265–311 (1958)

    MathSciNet  MATH  Google Scholar 

  52. McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 825–920 (1934)

    MathSciNet  Google Scholar 

  53. Ozawa, N., Rieffel, M.A.: Hyperbolic group \(C^{\ast }\)-algebras and free product \(C^{\ast }\)-algebras as compact quantum metric spaces. Can. J. Math. 57, 1056–1079 (2005). arXiv:math/0302310

    MathSciNet  MATH  Google Scholar 

  54. Reed, M., Simon, B.: Functional Analysis. Methods of Modern Mathematical Physics. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  55. Renault, J.: A Groupoid Approach to C*-Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

    MATH  Google Scholar 

  56. Rieffel, M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 93, 415–429 (1981)

    MathSciNet  MATH  Google Scholar 

  57. Rieffel, M.A.: Non-commutative tori—a case study of non-commutative differentiable manifolds. Contemp. Math. 105, 191–211 (1990)

    MATH  Google Scholar 

  58. Rieffel, M.A.: Metrics on states from actions of compact groups. Doc. Math. 3, 215–229 (1998). arXiv:math/9807084

    MathSciNet  MATH  Google Scholar 

  59. Rieffel, M.A.: Metrics on state spaces. Doc. Math. 4, 559–600 (1999). arXiv:math/9906151

    MathSciNet  MATH  Google Scholar 

  60. Rieffel, M.A.: Group \(C^{\ast }\)-algebras as compact quantum metric spaces. Doc. Math. 7, 605–651 (2002). arXiv:math/0205195

    MathSciNet  MATH  Google Scholar 

  61. Rieffel, M.A.: Gromov–Hausdorff distance for quantum metric spaces. Mem. Am. Math. Soc. 168(796), 1–65 (2004). arXiv:math/0011063

    MathSciNet  MATH  Google Scholar 

  62. Rieffel, M.A.: Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance. Mem. Am. Math. Soc. 168(796), 67–91 (2004). arXiv:math/0108005

    MathSciNet  MATH  Google Scholar 

  63. Rieffel, M.A.: Distances between matrix alegbras that converge to coadjoint orbits. Proc. Sympos. Pure Math. 81, 173–180 (2010). arXiv:0910.1968

    MATH  Google Scholar 

  64. Rieffel, M.A.: Leibniz seminorms for “Matrix algebras converge to the sphere”. Clay Math. Proc. 11, 543–578 (2010)

  65. Rieffel, M.A.: Standard deviation is a strongly Leibniz seminorm. N. Y. J. Math. 20, 35–56 (2014). arXiv:1208.4072

    MathSciNet  MATH  Google Scholar 

  66. Rieffel, M.A.: Matricial bridges for “matrix algebras converge to the sphere”. In: Operator Algebras and Their Applications. Contemporary Mathematics, vol. 671, pp. 209–233. American Mathematical Society, Providence, RI (2016). arXiv:1502.00329

  67. Santhanam, T., Sinha, K.B.: Quantum mechanics in finite dimensions. Aust. J. Phys. 31, 233–238 (1978)

    ADS  Google Scholar 

  68. Schreivogl, P., Steinacker, H.: Generalized fuzzy torus and its modular properties. SIGMA 9(060), 23 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909(32) (1999). arXiv:hep-th/9908142

  70. T’Hooft, G.: Determinism beneath quantum mechanics. Presentation at “Quo Vadis Quantum Mechanics?” Temple University, Philadelphia (2002). arXiv:quant-ph/0212095

  71. Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67(4), 267–320 (2004)

    ADS  MathSciNet  Google Scholar 

  72. Wasserstein, L.N.: Markov processes on a countable product space, describing large systems of automata. Problemy Peredachi Infomatsii 5(3), 64–73 (1969). in Russian

    Google Scholar 

  73. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publication, New York (1950) (Translated from the second (revised) German edition by H. P. Robertson)

  74. Zeller-Meier, G.: Produits croisés d’une C*-algébre par un groupe d’ Automorphismes. J. Math. Pures Appl. 47(2), 101–239 (1968)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Latrémolière.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latrémolière, F. Convergence of Spectral Triples on Fuzzy Tori to Spectral Triples on Quantum Tori. Commun. Math. Phys. 388, 1049–1128 (2021). https://doi.org/10.1007/s00220-021-04173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04173-0

Navigation