Skip to main content
Log in

On the Existence, Uniqueness, and Smoothing of Solutions to the Generalized SQG Equations in Critical Sobolev Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper studies the dissipative generalized surface quasi-geostrophic equations in a supercritical regime where the order of the dissipation is small relative to order of the velocity, and the velocities are less regular than the advected scalar by up to one order of derivative. We also consider a non-degenerate modification of the endpoint case in which the velocity is less smooth than the advected scalar by slightly more than one order. The existence and uniqueness theory of these equations in the borderline Sobolev spaces is addressed, as well as the instantaneous smoothing effect of their corresponding solutions. In particular, it is shown that solutions emanating from initial data belonging to these Sobolev classes immediately enter a Gevrey class. Such results appear to be the first of its kind for a quasilinear parabolic equation whose coefficients are of higher order than its linear term; they rely on an approximation scheme which modifies the flux so as to preserve the underlying commutator structure lost by having to work in the critical space setting, as well as delicate adaptations of well-known commutator estimates to Gevrey classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bae, H., Biswas, A.: Gevrey regularity for a class of dissipative equations with analytic nonlinearity. Methods Appl. Anal. 22(4), 377–408 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  3. Biswas, A.: Gevrey regularity for a class of dissipative equations with applications to decay. J. Differ. Equ. 253(10), 2739–2764 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Biswas, A.: Gevrey regularity for the supercritical quasi-geostrophic equation. J. Differ. Equ. 257(1), 1753–1772 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Biswas, A., Martinez, V.R., Silva, P.: On Gevrey regularity of the supercritical SQG equation in critical Besov spaces. J. Funct. Anal. 269(10), 3083–3119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201(1), 97–157 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Li, D.: Galilean boost and non-uniform continuity for incompressible Euler. Commun. Math. Phys. 372(1), 261–280 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chae, D., Constantin, P., Córdoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65(8), 1037–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae, D., Constantin, P., Wu, J.: Dissipative models generalizing the 2D Navier–Stokes and surface quasi-geostrophic equations. Indiana Univ. Math. J. 61(5), 1997–2018 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233(2), 297–311 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chae, D., Wu, J.: Logarithmically regularized inviscid models in borderline Sobolev spaces. J. Math. Phys. 53(11), 115601 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chemin, J.-Y.: Fluides parfaits incompressibles. Astérisque 230, 177 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Chemin, J.Y., Gallagher, I., Zhang, P.: On the radius of analyticity of solutions to semi–linear parabolic systems. Math. Res. Lett. 27(6), 1631–1643 (2020.) https://doi.org/10.4310/MRL.2020.v27.n6.a2

  17. Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271(3), 821–838 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Constantin, P., Foias, C.: Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988)

    Book  MATH  Google Scholar 

  19. Constantin, P., Iyer, G., Wu, J.: Global regularity for a modified critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 57(6), 2681–2692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the 2d quasigeostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math. Phys. 335(1), 93–141 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30(5), 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 159–180 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Cordoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. (2) 148(3), 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zelati, M.C., Vicol, V.: On the global regularity for the supercritical SQG equation. Indiana Univ. Math. J. 65(2), 535–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dabkowski, M.: Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation. Geom. Funct. Anal. 21(1), 1–13 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dong, H.: On a multi-dimensional transport equation with nonlocal velocity. Adv. Math. 264, 747–761 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dong, H.: Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness. Discrete Contin. Dyn. Syst. 26(4), 1197–1211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dong, H., Li, D.: Spatial analyticity of the solutions to the subcritical dissipative quasi-geostrophic equations. Arch. Ration. Mech. Anal. 189(1), 131–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dong, H., Li, D.: On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces. J. Differ. Equ. 248(11), 2684–2702 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Elgindi, T.M., Masmoudi, N.: \(L^\infty \) ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration. Mech. Anal. 235(3), 1979–2025 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Farwig, R., Giga, Y., Hsu, P.-Y.: On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces-. Ann. Mat. Pura Appl. (4) 198(5), 1495–1511 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Himonas, A.A., Misiolek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys. 296(1), 285–301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hmidi, T., Keraani, S.: Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. Adv. Math. 214(2), 618–638 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu, W., Kukavica, I., Ziane, M.: Sur l’existence locale pour une équation de scalaires actifs. C. R. Math. Acad. Sci. Paris 353(3), 241–245 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Inci, H.: On the regularity of the solution map of the incompressible Euler equation. Dyn. Partial Differ. Equ. 12(2), 97–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Inci, H.: On the well-posedness of the inviscid SQG equation. J. Differ. Equ. 264(4), 2660–2683 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Jolly, M.S., Kumar, A., Martinez, V.R.: On local well-posedness of logarithmic inviscid regularizations of generalized SQG equations in borderline Sobolev spaces, pp. 1–18. arXiv:2105.08203, May 17, 2021

  41. Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370(Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 40):58–72, 220 (2009)

  42. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kumar, A.: Thesis (Ph.D.)–Indiana University. Department of Mathematics (in preparation)

  44. Kwon, H.: Strong ill-posedness of logarithmically regularized 2d euler equations in the borderline Sobolev space. J. Funct. Anal. 108822 (2020)

  45. Lazar, O., Xue, L.: Regularity results for a class of generalized surface quasi-geostrophic equations. J. Math. Pures Appl. 9(130), 200–250 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton, FL (2002)

    Book  MATH  Google Scholar 

  47. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Majda, A.J., Tabak, E.: A two-dimensional model for quasigeostrophic flow: comparison with two-dimensional Euler flow. Phys. D 98, 515–522 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Martinez, V.R., Zhao, K.: Analyticity and dynamics of a Navier–Stokes–Keller–Segel system on bounded domains. Dyn. Partial Differ. Equ. 14(2), 125–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Miao, C., Xue, L.: On the regularity of a class of generalized quasi-geostrophic equations. J. Differ. Equ. 251(10), 2789–2821 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Miao, C., Xue, L.: Global well-posedness for a modified critical dissipative quasi-geostrophic equation. J. Differ. Equ. 252(1), 792–818 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Misiolek, G., Yoneda, T.: Local ill-posedness of the incompressible Euler equations in \(C^1\) and \(B^1_{\infty,1}\). Math. Ann. 364(1–2), 243–268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Miura, H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Commun. Math. Phys. 267(1), 141–157 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Oliver, M., Titi, E.S.: Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in \({ R}^n\). J. Funct. Anal. 172(1), 1–18 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Oliver, M., Titi, E.S.: On the domain of analyticity of solutions of second order analytic nonlinear differential equations. J. Differ. Equ. 174(1), 55–74 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  57. Resnick, S.G.: Dynamical problems in non-linear advective partial differential equations. ProQuest LLC, Ann Arbor, MI, (1995). Thesis (Ph.D.)–The University of Chicago

  58. Tao, T.: Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, (2006). Local and global analysis

  59. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI (2001). (Reprint of the 1984 edition)

  60. Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36(3), 1014–1030 (2004/05)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent R. Martinez.

Additional information

Communicated by A. Ionescu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank the referees for their comments and suggestions on the manuscript. The research of M.S.J. and A.K. was supported in part by the NSF Grant DMS-1818754. The research of V.R.M. was supported in part by the PSC-CUNY Grant 62239-00 50.

Appendices

Appendix A.

1.1 Proof of Lemma 4.1

By Bony paraproduct formula

$$\begin{aligned} {\mathcal {L}}_\sigma (f,g,h)=\ L_{1}+L_{2}+L_{3}, \end{aligned}$$

where

$$\begin{aligned}&L_{1}=\sum _{k} \iint \left| \xi \right| ^{\sigma }{\chi _{k-3}(\xi -\eta ){\hat{f}}(\xi -\eta ) \phi _k(\eta ){\hat{g}}(\eta )\overline{{\hat{h}}(\xi )}} d\eta d\xi , \\&L_{2}=\sum _{k}\iint \left| \xi \right| ^{\sigma }{\phi _k(\xi -\eta ){\hat{f}}(\xi -\eta ) \chi _{k-3}(\eta ){\hat{g}}(\eta )\overline{{\hat{h}}(\xi )}} d\eta d\xi , \\ \quad&L_{3}=\sum _{k}\iint \left| \xi \right| ^{\sigma }{\phi _k(\xi -\eta ){\hat{f}}(\xi -\eta ) {\widetilde{\phi }}_k(\eta ){\hat{g}}(\eta )\overline{{\hat{h}}(\xi )}} d\eta d\xi , \end{aligned}$$

and

$$\begin{aligned} \widetilde{\phi }_{k}{\mathcal {F}}(f)=\sum _{\left| i-k\right| \le 3}{\mathcal {F}}({\triangle _{i}}f). \end{aligned}$$

Observe that by the triangle inequality

$$\begin{aligned} |{\mathcal {L}}_\sigma (f,g,h)|\le {\mathcal {L}}_\sigma (|f|,|g|,|h|). \end{aligned}$$

We will treat the cases \(L_1, L_2\) and \(L_3\) separately.

1.1.1 Estimating \(L_1\) :

The localizations present in this case imply

$$\begin{aligned} \xi -\eta \in {{\mathcal {B}}}_{k-3}, \quad \eta \in {{\mathcal {A}}}_k. \end{aligned}$$

Observe that \(\chi _{k}(\xi -\eta )\phi _{k}(\eta )=0\), for all \(\left| k-j\right| \ge 3\), whenever \(\xi \in {{\mathcal {A}}}_j\). Thus for \(\sigma \in {\mathbb {R}}\)

$$\begin{aligned} |L_{1}| \le C\sum _{\left| k-j\right| \le 2} \iint \left| \eta \right| ^{\sigma }\chi _{k-3}(\xi -\eta )|{\hat{f}}(\xi -\eta )| \phi _{k}(\eta )|{\hat{g}}(\eta )||{\hat{h}}(\xi )|d\eta d\xi . \end{aligned}$$

By the Cauchy–Schwarz inequality, Young’s convolution inequality, and Plancherel’s theorem,

$$\begin{aligned} {|L_{1}|}&{\le C\sum _{\left| k-j\right| \le 2}\Vert \chi _{k-3}{\hat{f}}\Vert _{L^{1}}\Vert {\triangle _k}g\Vert _{{\dot{H}}^{\sigma }}\Vert h\Vert _{L^{2}}}. \end{aligned}$$
(A.1)

Suppose \(\epsilon >0\). Since \(f\in L^2\), the Cauchy–Schwarz inequality and Plancherel’s theorem implies

$$\begin{aligned} \Vert \chi _{k-3}{\hat{f}}\Vert _{L^{1}}\le \Vert \mathbb {1}_{{\mathcal {B}}(2^{k-3})}|\cdot |^{\epsilon -1}\Vert _{L^2}\Vert |\cdot |^{1-\epsilon }\chi _{k-3}{\hat{f}}\Vert _{L^2} \le \frac{C}{\epsilon ^{1/2}} 2^{\epsilon k}\Vert {S_{k-3}}f\Vert _{{\dot{H}}^{1-\epsilon }}. \end{aligned}$$

Upon returning to (A.1), it follows by the Cauchy–Schwarz inequality in \(l^{2}\) and Bernstein’s inequality that

$$\begin{aligned} \left| L_{1}\right|&\le C2^{\epsilon j}\Vert {S_{j-1}}f\Vert _{{\dot{H}}^{1-\epsilon }}\sum _{\left| k-j\right| \le 2}2^{\sigma k}\Vert \triangle _{k}g\Vert _{L^2}\Vert h\Vert _{L^{2}} \nonumber \\&\le Ca_{j}2^{\epsilon j}\Vert {S_{j-1}}f\Vert _{{\dot{H}}^{1-\epsilon }}\Vert g\Vert _{{\dot{H}}^{\sigma }}\Vert h\Vert _{L^{2}}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} a_{j}({\sigma }):=\frac{\left( \sum _{\left| k-j\right| \le 2}2^{2k{\sigma }}\Vert {\triangle _k}g\Vert _{L^2}^2\right) ^{1/2}}{\Vert g\Vert _{{\dot{H}}^{\sigma }}}. \end{aligned}$$

1.1.2 Estimating \(L_2\) :

The localizations in this case imply

$$\begin{aligned} \eta \in {{\mathcal {B}}}_{k-3}, \quad \xi -\eta \in {{\mathcal {A}}}_{k}, \end{aligned}$$

Thus

$$\begin{aligned} |L_{2}| \le C\sum _{\left| k-j\right| \le 2} \iint \left| \xi -\eta \right| ^{\sigma }\phi _k(\xi -\eta )|{\hat{f}}(\xi -\eta )|\chi _{k-3}(\eta )|{\hat{g}}(\eta )||{\hat{h}}(\xi )|\, d\eta \, d\xi . \end{aligned}$$

Suppose \(\sigma >-1\), then as in (A.1), the Cauchy–Schwarz inequality and Young’s convolution inequality imply

$$\begin{aligned} \left| L_{2}\right| \le C\sum _{k}\Vert \chi _{k-3}{\hat{g}}\Vert _{L^{\frac{4}{3+{\sigma }}}}\Vert \left| \cdot \right| ^{\sigma }\phi _k{\hat{f}}\Vert _{L^{\frac{4}{3-{\sigma }}}}\Vert h\Vert _{L^{2}}. \end{aligned}$$
(A.3)

Suppose \(\sigma <1\) and \(\epsilon \in {\mathbb {R}}\), by Hölder’s inequality, we have

$$\begin{aligned} \Vert \chi _{k-3}{\hat{g}}\Vert _{L^{\frac{4}{3+\sigma }}}&\le \Vert \mathbb {1}_{{\mathcal {B}}(2^{k-3})}|\cdot |^{-\sigma }\Vert _{L^{\frac{4}{{\sigma }+1}}}\Vert |\cdot |^{\sigma }\chi _{k-3}{\hat{g}}\Vert _{L^{2}} \le C2^{k(\frac{1}{2}-\frac{\sigma }{2})}\Vert {S_{k-3}g}\Vert _{{\dot{H}}^{\sigma }}\\ \Vert \left| \cdot \right| ^{\sigma }\phi _k{\hat{f}}\Vert _{L^{\frac{4}{3-\sigma }}}&\le \Vert \mathbb {1}_{{\mathcal {A}}(2^{k-1},2^{k+1})}|\cdot |^{\epsilon +{\sigma }-1}\Vert _{L^{\frac{4}{1-\sigma }}}\Vert |\cdot |^{1-\epsilon }\phi _k{\hat{f}}\Vert _{L^{2}} \le C2^{k(\epsilon +\frac{\sigma }{2}-\frac{1}{2})}\Vert {\triangle _k}f\Vert _{{\dot{H}}^{1-\epsilon }}. \end{aligned}$$

Upon returning to (A.3), and proceeding as for (A.2), one obtains

$$\begin{aligned} \left| L_{2}\right| \le Cb_{j}2^{\epsilon j}\Vert f\Vert _{{\dot{H}}^{1-\epsilon }}\Vert {S_{j-1}g}\Vert _{{\dot{H}}^{\sigma }}\Vert h\Vert _{L^{2}}, \end{aligned}$$
(A.4)

where

$$\begin{aligned} b_{j}(\epsilon ):=\frac{\left( \sum _{\left| k-j\right| \le 2}2^{2k(1-\epsilon )}\Vert {\triangle _k}f\Vert _{L^2}^2\right) ^{1/2}}{\Vert f\Vert _{{\dot{H}}^{1-\epsilon }}}. \end{aligned}$$

1.1.3 Estimating \(L_3\) :

Since \(\phi _{k}(\xi -\eta )\sum _{\left| k-l\right| \le 3}\phi _{l}(\eta )=0\), for all \(j \ge k+6\), whenever \(\xi \in {{\mathcal {A}}}_j\), the summation only occurs over the range \(k\ge j-5\). The localizations in this case imply

$$\begin{aligned} \xi -\eta \in {{\mathcal {A}}}_{k}, \quad \eta \in {{\mathcal {A}}}_{k-4,k+4}, \end{aligned}$$

so that for \({\sigma } <1\) and \(\epsilon <\sigma +1\), we have

$$\begin{aligned} \left| \xi \right| ^{\frac{{\sigma }+1-\epsilon }{2}}\le C\left| \xi -\eta \right| ^{1-\frac{\epsilon }{2}}\left| \eta \right| ^{\frac{{\sigma }-1}{2}}. \end{aligned}$$

This gives us

$$\begin{aligned} {|L_{3}| \le C\sum _{k\ge j-5} \iint |\xi -\eta |^{1-\frac{\epsilon }{2}}\phi _k(\xi -\eta )|{\hat{f}}(\xi -\eta )||\eta |^{\frac{\sigma }{2}-1} {\tilde{\phi }}_k(\eta )|{\hat{g}}(\eta )|\left| \xi \right| ^{\frac{\epsilon +{\sigma }-1}{2}}|{\hat{h}}(\xi )| d\eta d\xi .} \end{aligned}$$

The Cauchy–Schwarz inequality, Young’s convolution inequality, and Bernstein’s inequality imply

$$\begin{aligned} {|L_{3}|\le }&{C\sum _{k \ge j-5} \Vert |\cdot |^{1-\frac{\epsilon }{2}}\phi _k{\hat{f}}\Vert _{L^2}\Vert |\cdot |^{\frac{\sigma -1}{2}}{\tilde{\phi }}_k{\hat{g}}\Vert _{L^2}\Vert |\cdot |^{\frac{\epsilon +{\sigma }-1}{2}}{\hat{h}}\Vert _{L^{1}}}\nonumber \\ \le&C\sum _{k \ge j-5}2^{\frac{\epsilon }{2} k}\Vert {\triangle _k}\Lambda ^{1-\epsilon }f\Vert _{L^2}2^{-(\frac{{\sigma }+1}{2})k}\Vert {{\tilde{\triangle }}_k}\Lambda ^{\sigma }g\Vert _{L^2}2^{(\frac{\epsilon +{\sigma }+1}{2})j}\Vert h\Vert _{L^{2}} \nonumber \\ \le&Cc_{j}2^{\epsilon j}\Vert f\Vert _{{\dot{H}}^{1-\epsilon }}\Vert g\Vert _{{\dot{H}}^{\sigma }}\Vert h\Vert _{L^{2}}, \end{aligned}$$
(A.5)

where

$$\begin{aligned} {c_{j}({\sigma },\epsilon )}=\frac{\sum _{k\ge j-5}2^{-(\frac{{\sigma }+1-\epsilon }{2})(k-j)} \Vert {\triangle _k}\Lambda ^{\sigma }g\Vert _{L^2}\Vert {\triangle _k}\Lambda ^{1-\epsilon }f\Vert _{L^2}}{\Vert g\Vert _{{\dot{H}}^{\sigma }}\Vert f\Vert _{{\dot{H}}^{1-\epsilon }}}. \end{aligned}$$

Combining (A.2), (A.4), (A.5) and the fact that \({\mathcal {L}}_{\sigma }(f,g,h)={\mathcal {L}}_{\sigma }(g,f,h)\). completes the proof. \(\square \)

1.2 Proof of Lemma 4.2

By Plancherel’s theorem, we have

$$\begin{aligned} {\mathcal {L}}:= \langle [\triangle _j,g]f ,h\rangle =\iint m(\xi ,\eta ){\hat{g}}(\eta ){\hat{f}}(\xi -\eta )\overline{{\hat{h}}(\xi )}d\eta d\xi , \end{aligned}$$
(A.6)

where

$$\begin{aligned} m(\xi ,\eta ):=\phi _{j}(\xi )-\phi _{j}(\xi -\eta ). \end{aligned}$$

Observe that by the mean value theorem

$$\begin{aligned} |m(\xi ,\eta )|\le \left| \eta \right| 2^{-j}\Vert \nabla \phi _{0}\Vert _{L^{\infty }}. \end{aligned}$$

Using this in (A.6) and the fact that \({{\,\mathrm{supp}\,}}{\hat{h}}\subset {\mathcal {A}}_j\), we obtain

$$\begin{aligned} \left| {\mathcal {L}}\right| \le&C2^{-(1+\sigma )j}\iint |\xi |^{\sigma }|\hat{ f}(\xi -\eta )||\widehat{\Lambda g}(\eta )||{\hat{h}}(\xi )|d\eta d\xi , \end{aligned}$$

for any \(\sigma \in {\mathbb {R}}\). For \(\sigma \in (-1,1)\), \(\epsilon \in (0,2)\) such that \(\sigma >\epsilon -1\), application of Lemma 4.1 gives us

$$\begin{aligned} {\mathcal {L}}\le Cc_j2^{-(1+\sigma -\epsilon ) j}\min \left\{ \Vert f\Vert _{{\dot{H}}^{1-\epsilon }}\Vert \Lambda g\Vert _{{\dot{H}}^{\sigma }},\Vert \Lambda g\Vert _{{\dot{H}}^{1-\epsilon }}\Vert f\Vert _{{\dot{H}}^{\sigma }}\right\} \Vert h\Vert _{L^{2}}. \end{aligned}$$

We set \(\rho _1=\epsilon \) and \(\rho _2=\sigma \) to complete the proof. \(\square \)

Appendix B. Proof of Theorem 5.1

For \(\epsilon >0\), we consider the following artificial viscosity regularization of (5.1):

$$\begin{aligned} {\partial _{t}\theta -\epsilon \Delta \theta + {{\,\mathrm{div}\,}}F_{q}(\theta )=-{\gamma } \Lambda ^{\kappa }\theta .} \end{aligned}$$
(B.1)

For \(0\le t\le T\), define

$$\begin{aligned}&{F}_{1}(\theta ):=\gamma \int ^{t}_{0}e^{\epsilon \Delta (t-s)} \Lambda ^{\kappa }\theta (s)\, ds,\\&{F}_{2}(\theta ;q):=\int ^{t}_{0}e^{\epsilon \Delta (t-s)}{{\,\mathrm{div}\,}}F_{q}(\theta )\,ds. \end{aligned}$$

We have

$$\begin{aligned} \Vert F_1(\theta )(t)\Vert _{H^{\sigma _{c}}}&\le \frac{C}{\epsilon ^{\frac{\kappa }{2}}}\int _{0}^{t}\frac{1}{(t-s)^{\frac{\kappa }{2}}}\Vert \theta (s)\Vert _{H^{\sigma _{c}}}\,ds\\&\le \frac{CT^{1-\frac{\kappa }{2}}}{\epsilon ^{\frac{\kappa }{2}}}\Vert \theta \Vert _{L^{\infty }_{T}H^{\sigma _{c}}}. \end{aligned}$$

To estimate \(\Vert {F}_{2}(\theta ;q)\Vert _{H^{\sigma _c}}\), we consider the two cases \(\beta <1+\kappa \) and \(\beta \ge 1+\kappa \) separately.

1.1 Case: \({\beta \ge 1+\kappa }\).

By Lemma 4.3 with \(\rho _{1}=\kappa \) and \(\rho _{2}=\beta /2\), \(A_{\ell }=\Lambda ^{\beta -2}\partial _{\ell }^{\perp }\), proceeding as in (5.35), we obtain

$$\begin{aligned} \Vert F_{2}(\theta ;q)(t)\Vert _{{\dot{H}}^{\sigma _c}}&\le \frac{C}{\epsilon ^{\frac{\beta +2}{4}}}\int _{0}^{t}\frac{1}{(t-s)^{\frac{\beta +2}{4}}}\Vert [A_{\ell },\partial _{\ell }\theta ]{q}\Vert _{{\dot{H}}^{\frac{\beta }{2}-\kappa }}\,ds\\&\le \frac{C}{\epsilon ^{\frac{\beta +2}{4}}}T^{\frac{2-\beta }{4}}\Vert \theta \Vert _{L^{\infty }_{T}{\dot{H}}^{\sigma _{c}}}\Vert {q}\Vert _{L^{\infty }_{T}{\dot{H}}^{\frac{\beta }{2}}}. \end{aligned}$$

Similarly, by Lemma 4.3 with \(\rho _1=\rho _2=\kappa \), we have

$$\begin{aligned} \Vert F_{2}(\theta ;q)(t)\Vert _{L^2} \le CT\Vert \theta \Vert _{L^{\infty }_{T}{\dot{H}}^{\sigma _{c}}}\Vert {q}\Vert _{L^{\infty }_{T}{\dot{H}}^{\kappa }}. \end{aligned}$$

1.1.1 Case: \({\beta < 1+\kappa }\).

In this case, we have

$$\begin{aligned} \Vert F_{2}(\theta ;q)(t)\Vert _{H^{\sigma _c}}&\le \int _{0}^{t}\left\{ 1+\frac{C}{\epsilon ^{\frac{\sigma _{c}}{2}}}\frac{1}{(t-s)^{\frac{\sigma _{c}}{2}}}\right\} \Vert A_{\ell }{q}\,\partial _{\ell }\theta \Vert _{L^2}\,ds\\ {}&\le C\left( T+\frac{T^{\frac{2-\sigma _c}{2}}}{\epsilon ^{\frac{\sigma _c}{2}}}\right) \Vert \theta \Vert _{L^{\infty }_{T}{\dot{H}}^{\sigma _{c}}}\Vert {q}\Vert _{L^{\infty }_{T}{\dot{H}}^{\kappa }}. \end{aligned}$$

Using Picard’s theorem [46], there exists a unique solution \(\theta ^{\epsilon }\) to (B.1) such that \(\theta ^{\epsilon }\in L^{\infty }_{T^{\epsilon }}H^{\sigma _c}\) for some time \(T^{\epsilon }>0\). Owing to the uniform estimate in (5.32), we can conclude that

$$\begin{aligned} T^{\epsilon }=T,\quad \text {for all}\ \epsilon >0. \end{aligned}$$

Using similar methods as above, it is easy to see that \(\Vert \partial _{t}\theta ^{\epsilon }\Vert _{L^{\infty }_{T}H^{\sigma _{c}-2}}\) is bounded uniformly in \(\epsilon \). An application of Aubin-Lions theorem [18] guarantees the existence of a limiting function \(\theta \) in \(L^{\infty }_{T}H^{\sigma _c}\). It is then straightforward to show that \(\theta \) is a weak solution of (5.1). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolly, M.S., Kumar, A. & Martinez, V.R. On the Existence, Uniqueness, and Smoothing of Solutions to the Generalized SQG Equations in Critical Sobolev Spaces. Commun. Math. Phys. 387, 551–596 (2021). https://doi.org/10.1007/s00220-021-04124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04124-9

Navigation