Abstract
We show an equality between the analytic torsion and the absolute value at zero of the Ruelle dynamical zeta function on a closed odd dimensional locally symmetric space twisted by an acyclic flat vector bundle obtained by the restriction of a representation of the underlying Lie group. This generalises author’s previous result for unitarily flat vector bundles, and the results of Bröcker, Müller, and Wotzke on closed hyperbolic manifolds.
This is a preview of subscription content, access via your institution.
Notes
More precisely, we need assume that the Casimir of \(\mathfrak {g}\) acts on \(\rho \) as a scalar.
By [BSh19, Theorem 2.3], this is indeed independent of the choice of \(g_{\gamma }\).
The quantity \(\ell _{[\gamma ]}\) defined in (2.16) depends only on the conjugacy class of \(\gamma \) in G. So they are well defined on the conjugacy classes of \(\Gamma \).
A more general construction for the Selberg zeta function is given in [Sh20], which is associated to \(\eta \) and to an arbitrary representation of \(\rho :\Gamma \rightarrow {{\,\mathrm{\mathrm GL}\,}}_{r}(\mathbf {C})\).
They are called Dirac cohomology of E (see [HuPa06]).
References
Bénard, L., Dubois, J., Heusener, M., Porti, J.: Asymptotics of twisted Alexander polynomials and hyperbolic volume. Indiana Univ. Math. J. arXiv:1912.12946 (2019)
Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, Grundlehren Text Editions. Springer, Berlin (2004). Corrected reprint of the 1992 original
Bismut, J.-M.: Hypoelliptic Laplacian and Orbital Integrals, Annals of Mathematics Studies, vol. 177. Princeton University Press, Princeton (2011)
Bismut, J.-M., Ma, X., Zhang, W.: Opérateurs de Toeplitz et torsion analytique asymptotique. C. R. Math. Acad. Sci. Paris 349(17–18), 977–981 (2011)
Bismut, J.-M., Ma, X., Zhang, W.: Asymptotic torsion and Toeplitz operators. J. Inst. Math. Jussieu 16(2), 223–349 (2017)
Bismut, J.-M., Shen, S.: Geometric orbital integrals and the center of the enveloping algebra. arXiv:1910.11731 (2019)
Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller, Astérisque (1992), no. 205, 235, With an appendix by François Laudenbach
Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups, second ed., Mathematical Surveys and Monographs, vol. 67. American Mathematical Society, Providence (2000)
Borns-Weil, Y., Shen, S.: Dynamical zeta functions in the nonorientable case. arXiv:2007.08043 (2020)
Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups, Graduate Texts in Mathematics, vol. 98. Springer, New York (1985)
Bröcker, U.: Die Ruellesche Zetafunktion für \(G\)-induzierte Anosov-Flüsse. Ph.D. thesis, Humboldt-Universität Berlin, Berlin (1998)
Cappell, S.E., Miller, E.Y.: Complex-valued analytic torsion for flat bundles and for holomorphic bundles with \((1,1)\) connections. Commun. Pure Appl. Math. 63(2), 133–202 (2010)
Cekić, M., Dyatlov, S., Küster, B., Paternain, G.P.: The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds. arXiv:2009.08558 (2020)
Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. (2) 109(2), 259–322 (1979)
Dai, X., Yu, J.: Comparison between two analytic torsions on orbifolds. Math. Z. 285(3–4), 1269–1282 (2017)
Dang, N.V., Guillarmou, C., Rivière, G., Shen, S.: The Fried conjecture in small dimensions. Invent. Math. 220(2), 525–579 (2020)
de Rham, G.: Complexes à automorphismes et homéomorphie différentiable. Ann. Inst. Fourier Grenoble 2(1950), 51–67 (1951)
Duistermaat, J.J., Kolk, J.A.C., Varadarajan, V.S.: Spectra of compact locally symmetric manifolds of negative curvature. Invent. Math. 52(1), 27–93 (1979)
Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. Ann. Sci. Éc. Norm. Supér. (4) 49(3), 543–577 (2016)
Dyatlov, S., Zworski, M.: Ruelle zeta function at zero for surfaces. Invent. Math. 210(1), 211–229 (2017)
Franz, W.: Über die Torsion einer Überdeckung. J. Reine Angew. Math. 173, 245–254 (1935). German
Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84(3), 523–540 (1986)
Fried, D.: Fuchsian groups and Reidemeister torsion, The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, pp. 141–163. American Mathematical Society, Providence (1986)
Fried, D.: Lefschetz formulas for flows, The Lefschetz centennial conference, Part III (Mexico City, 1984) Contemp. Math., vol. 58, pp. 19–69. American Mathematical Society, Providence (1986)
Gel’fand, I.M., Graev, M.I., Pyatetskii-Shapiro, I.I.: Representation theory and automorphic functions, Translated from the Russian by K. A. Hirsch, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont. (1969)
Giulietti, P., Liverani, C., Pollicott, M.: Anosov flows and dynamical zeta functions. Ann. Math. (2) 178(2), 687–773 (2013)
Guruprasad, K., Haefliger, A.: Closed geodesics on orbifolds. Topology 45(3), 611–641 (2006)
Hecht, H., Schmid, W.: Characters, asymptotics and \(n\)-homology of Harish-Chandra modules. Acta Math. 151(1–2), 49–151 (1983)
Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)
Huang, J.-S., Pandžić, P.: Dirac Operators in Representation Theory, Mathematics: Theory & Applications. Birkhäuser Boston Inc, Boston (2006)
Knapp, A.W.: Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36. Princeton University Press, Princeton, NJ (1986). An overview based on examples
Knapp, A.W.: Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140. Birkhäuser Boston, Inc., Boston (2002)
Knapp, A.W., Vogan Jr., D.A.: Cohomological Induction and Unitary Representations, Princeton Mathematical Series, vol. 45. Princeton University Press, Princeton (1995)
Kostant, B.: On Macdonald’s \(\eta \)-function formula, the Laplacian and generalized exponents. Adv. Math. 20(2), 179–212 (1976)
Kostant, B.: Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the \(\rho \)-decomposition \(C(\mathfrak{g})={\rm End}\, V_\rho \otimes C(P)\), and the \(\mathfrak{g}\)-module structure of \(\bigwedge \mathfrak{g}\). Adv. Math. 125(2), 275–350 (1997)
Ma, X.: Orbifolds and analytic torsions. Trans. Am. Math. Soc. 357(6), 2205–2233 (2005). electronic
Ma, X., Geometric hypoelliptic Laplacian and orbital integrals [after Bismut, Lebeau and Shen], no. 407. Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135. Exp. No. 1130, 333–389 (2019)
Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17. Springer, Berlin (1991)
Matsushima, Y.: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds. J. Differ. Geom. 1, 99–109 (1967)
Matsushima, Y., Murakami, S.: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. Math. (2) 78, 365–416 (1963)
Milnor, J.: Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), pp. 115–133. Prindle, Weber & Schmidt, Boston (1968)
Moscovici, H., Stanton, R.J.: \(R\)-torsion and zeta functions for locally symmetric manifolds. Invent. Math. 105(1), 185–216 (1991)
Müller, W.: Analytic torsion and \(R\)-torsion of Riemannian manifolds. Adv. Math. 28(3), 233–305 (1978)
Müller, W.: Analytic torsion and \(R\)-torsion for unimodular representations. J. Am. Math. Soc. 6(3), 721–753 (1993)
Müller, W.: The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry. Progr. Math., vol. 297, pp. 317–352. Birkhäuser/Springer, Basel (2012)
Müller, W.: On Fried’s conjecture for compact hyperbolic manifolds. arXiv:2005.01450 (2020)
Quillen, D.: Superconnections and the Chern character. Topology 24(1), 89–95 (1985)
Ray, D.B., Singer, I.M.: \(R\)-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)
Reidemeister, K.: Homotopieringe und Linsenräume. Abh. Math. Sem. Univ. Hamburg 11(1), 102–109 (1935)
Salamanca-Riba, S.A.: On the unitary dual of real reductive Lie groups and the \(A_{\mathfrak{q}}(\lambda )\) modules: the strongly regular case. Duke Math. J. 96(3), 521–546 (1999)
Satake, I.: The Gauss-Bonnet theorem for \(V\)-manifolds. J. Math. Soc. Jpn. 9, 464–492 (1957)
Seeley, R.T.: Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), pp. 288–307. American Mathematical Society, Providence (1967)
Selberg, A.: On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), pp. 147–164. Tata Institute of Fundamental Research, Bombay (1960)
Shen, S.: Analytic torsion, dynamical zeta functions, and the Fried conjecture. Anal. PDE 11(1), 1–74 (2018)
Shen, S.: Analytic torsion and dynamical flow: A survey on the Fried conjecture
Shen, S.: Complex valued analytic torsion and dynamical zeta function on locally symmetric spaces. arXiv:2009.03427 (2020)
Shen, S., Yu, J.: Flat vector bundles and analytic torsion on orbifolds. Commun. Anal. Geom. arXiv:1704.08369 (2017)
Shen, S., Yu, J.: Morse-Smale flow, Milnor metric, and dynamical zeta function. J. Éc. polytech. Math. 8, 585–607 (2021)
Spilioti, P.: Selberg and Ruelle zeta functions for non-unitary twists. Ann. Global Anal. Geom. 53(2), 151–203 (2018)
Spilioti, P.: Functional equations of Selberg and Ruelle zeta functions for non-unitary twists. Ann. Global Anal. Geom. 58(1), 35–77 (2020)
Spilioti, P.: Twisted Ruelle zeta function and complex-valued analytic torsion. arXiv:2004.13474 (2020)
Vogan Jr., D.A.: Unitarizability of certain series of representations. Ann. Math. (2) 120(1), 141–187 (1984)
Vogan Jr., D.A., Zuckerman, G.J.: Unitary representations with nonzero cohomology. Compositio Math. 53(1), 51–90 (1984)
Voros, A.: Spectral functions, special functions and the Selberg zeta function. Commun. Math. Phys. 110(3), 439–465 (1987)
Wotzke, A.: Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten. Ph.D. thesis, Bonn, Bonner Mathematische Schriften (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Dyatlov
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The author acknowledges the partial support by the Grant ANR-20-CE40-0017.
Rights and permissions
About this article
Cite this article
Shen, S. Analytic Torsion, Dynamical Zeta Function, and the Fried Conjecture for Admissible Twists. Commun. Math. Phys. 387, 1215–1255 (2021). https://doi.org/10.1007/s00220-021-04113-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-021-04113-y