Skip to main content
Log in

A Probabilistic Mechanism for Quark Confinement

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The confinement of quarks is one of the enduring mysteries of modern physics. There is a longstanding physics heuristic that confinement is a consequence of ‘unbroken center symmetry’. This article gives mathematical confirmation of this heuristic, by rigorously defining of center symmetry in lattice gauge theories and proving that a theory is confining when center symmetry is unbroken. Furthermore, a sufficient condition for unbroken center symmetry is given: It is shown that if the center of the gauge group is nontrivial, and correlations decay exponentially under arbitrary boundary conditions, then center symmetry does not break.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aizenman, M., Chayes, J.T., Chayes, L., Fröhlich, J., Russo, L.: On a sharp transition from area law to perimeter law in a system of random surfaces. Commun. Math. Phys. 92(1), 19–69 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  2. Balian, R., Drouffe, J.M., Itzykson, C.: Gauge fields on a lattice. I. General outlook. Phys. Rev. D 10(10), 3376–3395 (1974)

    Article  ADS  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  Google Scholar 

  4. Borgs, C.: Translation symmetry breaking in four-dimensional lattice gauge theories. Commun. Math. Phys. 96(2), 251–284 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  5. Borgs, C., Seiler, E.: Lattice Yang-Mills theory at nonzero temperature and the confinement problem. Commun. Math. Phys. 91(3), 329–380 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  6. Brydges, D.C., Federbush, P.: Debye screening. Commun. Math. Phys. 73(3), 197–246 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. Cao, S.: Wilson loop expectations in lattice gauge theories with finite gauge groups. Commun. Math. Phys. 380, 1439–1505 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chatterjee, S.: Rigorous solution of strongly coupled \(SO(N)\) lattice gauge theory in the large \(N\) limit. Commun. Math. Phys. 366, 203–268 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chatterjee, S.: Yang-Mills for probabilists. In: Probability and Analysis in Interacting Physical Systems, pp. 1–16. Springer, Cham (2019)

  10. Chatterjee, S.: Wilson loops in Ising lattice gauge theory. Commun. Math. Phys. 377, 307–340 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  11. Chatterjee, S., Jafarov, J.: The \(1/N\) expansion for \(SO(N)\) lattice gauge theory at strong coupling. arXiv preprint arXiv:1604.04777 (2016)

  12. Dobrushin, R.L., Shlosman, S.B.: Constructive criterion for the uniqueness of Gibbs field. In: Statistical Physics and Dynamical Systems, pp. 347–370. Birkhäuser Boston, Boston, MA (1985)

  13. Durhuus, B., Fröhlich, J.: A connection between \(\nu \)-dimensional Yang-Mills theory and \((\nu - 1)\)-dimensional, non-linear \(\sigma \)-models. Commun. Math. Phys. 75(2), 103–151 (1980)

    Article  Google Scholar 

  14. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  15. Forsström, M. P., Lenells, J., Viklund, F.: Wilson loops in finite Abelian lattice gauge theories. arXiv preprint arXiv:2001.07453 (2020)

  16. Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19(12), 3682–3697 (1979)

    Article  ADS  Google Scholar 

  17. Fröhlich, J.: Confinement in \(\mathbb{Z}_n\) lattice gauge theories implies confinement in \(SU(n)\) lattice Higgs theories. Phys. Lett. B 83(2), 195–198 (1979)

    Article  Google Scholar 

  18. Fröhlich, J., Spencer, T.: Massless phases and symmetry restoration in abelian gauge theories and spin systems. Commun. Math. Phys. 83(3), 411–454 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. Walter de Gruyter & Co., Berlin (2011)

    Book  Google Scholar 

  20. Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  21. Göpfert, M., Mack, G.: Proof of confinement of static quarks in 3-dimensional \(U(1)\) lattice gauge theory for all values of the coupling constant. Commun. Math. Phys. 82(4), 545–606 (1982)

    Article  MathSciNet  Google Scholar 

  22. Greensite, J.: An Introduction to the Confinement Problem. Springer, Heidelberg (2011)

    Book  Google Scholar 

  23. Greensite, J., Lautrup, B.: First-order phase transition in four-dimensional \({\rm SO}(3)\) lattice gauge theory. Phys. Rev. Lett. 47(1), 9–11 (1981)

    Article  MathSciNet  Google Scholar 

  24. Guth, A.H.: Existence proof of a nonconfining phase in four-dimensional \(U(1)\) lattice gauge theory. Phys. Rev. D 21(8), 2291–2307 (1980)

    Article  MathSciNet  Google Scholar 

  25. Hall, B.C.: Lie Groups, Lie Algebras, and Representations. An Elementary Introduction, 2nd edn. Springer, Cham (2015)

    Book  Google Scholar 

  26. Jaffe, A., Witten, E.: Quantum Yang–Mills theory. In: The Millennium Prize Problems, pp. 129–152, Clay Math. Inst., Cambridge, MA (2006)

  27. Kotecký, R., Shlosman, S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83(4), 493–515 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  28. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence, RI

  29. Morningstar, C.J., Peardon, M.: Glueball spectrum from an anisotropic lattice study. Phys. Rev. D 60(3), 034509 (1999)

    Article  ADS  Google Scholar 

  30. Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys. 110(2), 440–471 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  31. Patrascioiu, A., Seiler, E.: Is the 2D \(O(3)\) nonlinear \(\sigma \) model asymptotically free? Phys. Lett. B 430(3–4), 314–319 (1998)

    Article  Google Scholar 

  32. Seiler, E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Springer, Berlin (1982)

    Google Scholar 

  33. Simon, B., Yaffe, L.G.: Rigorous perimeter law upper bound on Wilson loops. Phys. Lett. B 115(2), 145–147 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  34. ’t Hooft, G.: On the phase transition towards permanent quark confinement. Nuclear Phys. B 138(1), 1–25 (1978)

  35. Wegner, F.J.: Duality in generalized Ising models and phase transitions without local order parameters. J. Math. Phys. 12(10), 2259–2272 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  36. Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10(8), 2445–2459 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Christian Borgs, Persi Diaconis, Jürg Fröhlich, Len Gross, Erhard Seiler, Senya Shlosman, Tom Spencer, Raghu Varadhan, and Akshay Venkatesh for helpful discussions. I am especially grateful to Edward Witten and Steve Shenker for many lengthy and illuminating conversations, and to Sky Cao for carefully reading the proof and pointing out some important references. Lastly, I thank the referees for a number of useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Chatterjee.

Additional information

Communicated by M. Salmhofer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was partially supported by NSF Grant DMS-1855484

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S. A Probabilistic Mechanism for Quark Confinement. Commun. Math. Phys. 385, 1007–1039 (2021). https://doi.org/10.1007/s00220-021-04086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04086-y

Navigation