Skip to main content
Log in

Evaluating Thin Flat Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider recognizable evaluations for a suitable category of oriented two-dimensional cobordisms with corners between finite unions of intervals. We call such cobordisms thin flat surfaces. An evaluation is given by a power series in two variables. Recognizable evaluations correspond to series that are ratios of a two-variable polynomial by the product of two one-variable polynomials, one for each variable. They are also in a bijection with isomorphism classes of commutative Frobenius algebras on two generators with a nondegenerate trace fixed. The latter algebras of dimension n correspond to points on the dual tautological bundle on the Hilbert scheme of n points on the affine plane, with a certain divisor removed from the bundle. A recognizable evaluation gives rise to a functor from the above cobordism category of thin flat surfaces to the category of finite-dimensional vector spaces. These functors may be non-monoidal in interesting cases. To a recognizable evaluation we also assign an analogue of the Deligne category and of its quotient by the ideal of negligible morphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Topological quantum field theories derived from the Kauffman bracket. Topology 34(4), 883–927 (1995)

    Article  MathSciNet  Google Scholar 

  2. Caprau, C.: Twin TQFTs and Frobenius algebras. J. Math. 2013, Article ID 407068. https://doi.org/10.1155/2013/407068

  3. Comes, J., Ostrik, V.: On blocks of Deligne’s category \({ {Rep}}(S_t)\). Adv. Math. 226, 1331–1377 (2011). (arXiv:0910.5695)

    Article  MathSciNet  Google Scholar 

  4. Deligne, P.: La catégorie des représentations du groupe symétrique \(S_t\), lorsque \(t\) n’est pas en entier naturel. In: Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Studies Math. Mumbai, pp. 209–273 (2007)

  5. Etingof, P., Ostrik, V.: On Semisimplification of Tensor Categories. arXiv:1801.04409

  6. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Math. Surveys and Monographs, vol. 205, AMS (2015)

  7. Fliess, M.: Séries reconnaissables, rationnelles et algébriques. Bull. Sci. Math. 94, 231–239 (1970)

    MathSciNet  MATH  Google Scholar 

  8. Friedrich, R.: Types, codes and TQFTs. arXiv:1805.02286

  9. Freedman, M.H., Kitaev, A., Nayak, C., Slingerland, J.K., Walker, K., Wang, Z.: Universal manifold pairings and positivity. Geom. Topol. 9, 2303–2317 (2005)

    Article  MathSciNet  Google Scholar 

  10. Fornasini, E., Marchesini, G.: State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Control AC–21(4), 484–492 (1976)

    Article  MathSciNet  Google Scholar 

  11. Hazewinkel, M.: Cofree coalgebras and multivariable recursiveness. J. Pure Appl. Algebra 183, 61–103 (2003)

    Article  MathSciNet  Google Scholar 

  12. Helmke, U.: Linear dynamical systems and instantons in Yang-Mills theory. IMA J. Math. Control Inf. 3, 151–166 (1986)

    Article  Google Scholar 

  13. Khovanov, M.: sl(3) link homology. Algebraic Geom. Topol. 4, 1045–1081 (2004)

    Article  MathSciNet  Google Scholar 

  14. Khovanov, M.: Universal Construction of Topological Theories in Two Dimensions. arXiv:2007.03361

  15. Khovanov, M., Kononov, Y., Ostrik, V.: In: Preparation

  16. Khovanov, M., Sazdanovic, R.: Bilinear Pairings on Two-Dimensional Cobordisms and Generalizations of the Deligne Category. arXiv:2007.11640

  17. Lauda, A.D., Pfeiffer, H.: Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 155, 623–666 (2008)

    Article  MathSciNet  Google Scholar 

  18. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Mathematics 227. Springer, Berlin (2005)

    Google Scholar 

  19. Moore, G.W., Segal, G.: D-Branes and K-Theory in 2D Topological Field Theory. arXiv:hep-th/0609042

  20. Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series, vol. 18. AMS (1999)

  21. Robert, L.-H., Wagner, E.: A Closed Formula for the Evaluation of \({sl}_N\)-Foams. to appear in Quantum Topology. arXiv:1702.04140

  22. Sontag, E.D.: A remark on bilinear systems and moduli spaces of instantons. Syst. Control Lett. 9, 361–367 (1987)

    Article  MathSciNet  Google Scholar 

  23. Schommer-Pries, C.: The classification of two-dimensional extended topological field theories. arXiv:1112.1000

Download references

Acknowledgements

M.K. was partially supported by the NSF grant DMS-1807425 while working on this paper. Y. Q. was partially supported by the NSF grant DMS-1947532. L.R. was partially supported by the NSF grant DMS-1760578.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Qi.

Additional information

Communicated by S. Gukov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khovanov, M., Qi, Y. & Rozansky, L. Evaluating Thin Flat Surfaces. Commun. Math. Phys. 385, 1835–1870 (2021). https://doi.org/10.1007/s00220-021-04011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04011-3

Navigation