Abstract
In this note we study advection-diffusion equations associated to incompressible \(W^{1,p}\) velocity fields with \(p>2\). We present new estimates on the energy dissipation rate and we discuss applications to the study of upper bounds on the enhanced dissipation rate, lower bounds on the \(L^2\) norm of the density, and quantitative vanishing viscosity estimates. The key tools employed in our argument are a propagation of regularity result, coming from the study of transport equations, and a new result connecting the energy dissipation rate to regularity estimates for transport equations. Eventually we provide examples which underline the sharpness of our estimates.
Similar content being viewed by others
Notes
Here and in the sequel we use the notation \(A \sim _c B\) to mean that \(C^{-1}A \le B \le C A\) where C depends only on c. Similar notation will be adopted for \(\lesssim _c\) and \( > rsim _c\).
References
Alberti, G., Crippa, G., Mazzucato, A.-L.: Exponential self-similar mixing and loss of regularity for continuity equations. C. R. Math. Acad. Sci. Paris 352(11), 901–906 (2014)
Alberti, G., Crippa, G., Mazzucato, A.-L.: Exponential self-similar mixing by incompressible flows. J. Am. Math. Soc. 32(2), 445–490 (2019)
Alberti, G., Crippa, G., Mazzucato, A.-L.: Loss of regularity for the continuity equation with non-Lipschitz velocity field. Ann. PDE 5(1), 5:9 (2019)
Ambrosio, L.: Transport equation and Cauchy problem for \(BV\) vector fields. Invent. Mat. 158, 227–260 (2004)
Ambrosio, L., Crippa, G.: Continuity equations and ODE flows with non-smooth velocity. Proc. R. Soc. Edinb. Sect. A 144, 1191–1244 (2014)
Ben Belgacem, F., Jabin, P.-E.: Convergence of numerical approximations to non-linear continuity equations with rough force fields. Arch. Ration. Mech. Anal. 234(2), 509–547 (2019)
Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224(3), 1161–1204 (2017)
Bressan, A.: A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova 110, 97–102 (2003)
Brué, E., Colombo, M., De Lellis, C.: Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Arch. Ration. Mech. Anal. (to appear), preprint arXiv:2003.00539
Brué, E., Nguyen, Q.-H.: On the Sobolev space of functions with derivative of logarithmic order. Adv. Nonlinear Anal. 9(1), 836–849 (2020)
Brué, E., Nguyen, Q.-H.: Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields. Anal. PDE (to appear)
Brué, E., Nguyen, Q.-H.: Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-01988-5
Constantin, P., Kiselev, A., Ryzhik, L., Zlatos, A.: Diffusion and mixing in fluid flow. Ann. Math. (2) 168(2), 643–674 (2008)
Coti Zelati, M., Delgadino, M.-G., Elgindi, T.-M.: On the relation between enhanced dissipation time-scales and mixing rates. Commun. Pure Appl. Math. 73(6), 1205–1244 (2020)
Coti Zelati, M., Dolce, M.: Separation of time-scales in drift-diffusion equations on \({\mathbb{R}}^2\). J. Math. Pures Appl. (9) 142, 58–75 (2020)
Coti Zelati, M., Drivas, T.-D.: A stochastic approach to enhanced diffusion. Ann. Scu. Norm. Sup. Pisa Cl. Sci. (to appear), preprint on arXiv:1911.09995
Crippa, G., De Lellis, C.: Estimates and regularity results for the Di Perna–Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)
DiPerna, R.-J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)
Drivas, T.-D., Elgindi, T.-M., Iyer, G., Jeong, I.-J.: Anomalous dissipation in passive scalar transport. Preprint on arXiv:1911.03271
Elgindi, T.-M., Zlatoš, A.: Universal mixers in all dimensions. Adv. Math. 356, 106807–33 (2019)
Feng, Y., Iyer, G.: Dissipation enhancement by mixing. Nonlinearity 32(5), 1810–1851 (2019)
Iyer, G., Kiselev, A., Xu, X.: Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows. Nonlinearity 27(5), 973–985 (2014)
Jeong, I.-J., Yoneda, T.: Vortex stretching and a modified zeroth law for the incompressible 3D Navier–Stokes equations. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-02019-z
Jabin, P.-E.: Critical non-Sobolev regularity for continuity equations with rough velocity fields. J. Differ. Equ. 260(5), 4739–4757 (2016)
Kunita, H.: Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics. Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge University Press, Cambridge (1997). (Reprint of the 1990 original)
Léger, F.: A new approach to bounds on mixing. Math. Models Methods Appl. Sci. 28(5), 829–849 (2018)
Miles, C.-J., Doering, C.-R.: Diffusion-limited mixing by incompressible flows. Nonlinearity 31(5), 2346–2350 (2018)
Modena, S., Sattig, G.: Convex integration solutions to the transport equation with full dimensional concentration. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2020 (to appear), preprint on arXiv:1902.08521
Modena, S., Székelyhidi Jr., L.: Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4(2), 1–38 (2018)
Modena, S., Székelyhidi Jr., L.: Non-renormalized solutions to the continuity equation. Calc. Var. Partial Differ. Equ. 58(6), 1–30 (2019)
Nguyen, Q.-H.: Quantitative estimates for regular Lagrangian flows with \(BV\) vector fields. Comm. Pure Appl. Math. (to appear), preprint on arXiv:1805.01182
Poon, C.-C.: Unique continuation for parabolic equations. Commun. Partial Differ. Equ. 21(3–4), 521–539 (1996)
Seis, C.: A quantitative theory for the continuity equation. Ann. Inst. H. Poincaré Anal. Non Liné aire 34(7), 1837–1850 (2017)
Seis, C.: Optimal stability estimates for continuity equations. Proc. R. Soc. Edinb. Sect. A 148(6), 1279–1296 (2018)
Seis, C.: Diffusion limited mixing rates in passive scalar advection. Preprint on arXiv:2003.08794
Yao, Y., Zlatoš, A.: Mixing and un-mixing by incompressible flows. J. Eur. Math. Soc. 19(7), 1911–1948 (2017)
Acknowledgements
Most of this work was developed while the first author was a PhD student at Scuola Normale Superiore, Pisa. The second author was supported by the ShanghaiTech University startup fund, and part of this work was done while he was visiting Scuola Normale Superiore. The authors wish to express their gratitude to this institution for the excellent working conditions and the stimulating atmosphere.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Ionescu.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Brué, E., Nguyen, QH. Advection Diffusion Equations with Sobolev Velocity Field. Commun. Math. Phys. 383, 465–487 (2021). https://doi.org/10.1007/s00220-021-03993-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-021-03993-4